
NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

Comparing the Multimodal Interaction Technique Design

of MINT with NiMMiT
Sebastian Feuerstack

OFFIS – Institute for Information
Technology, Escherweg 2

26121 Oldenburg, Germany
feuerstack@offis.de

Ednaldo Brigante Pizzolato
Universidade Federal de São Carlos
Rodovia Washington Luís, km 235

São Carlos - São Paulo – Brasil

ednaldo@dc.ufscar.br

ABSTRACT

With new sensors that can capture hand and body movements in

3D, novel interaction techniques gain importance. But

development of new forms of interaction is highly iterative,

depends on extensive user testing and therefore is expensive. We

propose a model-based notation using statecharts and mappings to

ease multimodal interaction technique design. This model-based

specification can be used to communicate designs, for evaluation

and to enable re-use. Our contribution continues previous research

on model-based interaction technique design considers

multimodal interaction and addresses problems like the state

explosion, error management and consideration of output

modalities mentioned by earlier research. We evaluate our

notation by comparing it with NiMMiT referring to the same use

case to identify similarities, strength and problems.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces - Input devices and strategies, Interaction styles,

Prototyping; D.2.2 [Software Engineering]: Design Tools and

Techniques – User Interfaces.

General Terms

Design, Human Factors, Languages.

Keywords

Interaction Techniques, Interaction Metaphors, Multimodal

Interaction, Model-Based Design.

1. INTRODUCTION
The great variety of different devices to access and control

services in smart environments can be used to improve human-

computer interaction to be more natural by considering and

combining several modes of access in one interaction. Decades of

research have been performed to figure out suitable interaction

techniques for certain control modes. After the desktop and WIMP

interaction metaphor have been introduced, the emerging variety

of devices continuously substitutes classic interaction techniques

that were optimized for the desktop PC. The Post-WIMP term

sums up the trend to design interaction techniques specifically to a

certain combination of an application and one or more interaction

devices and their control modes.

Non-traditional interfaces that consider modes like speech or

gestures and media such as augmented and hyper-reality offer a

high degree of freedom in interaction design but make the design

process cumbersome since extensive user testing is usually

required to figure out an efficient and accessible way of

interaction.

High-level description languages have been developed to ease the

design of multimodal interaction techniques by providing means

to design, prototype, communicate and store interaction

techniques to be re-usable. Model-based user interface design is a

widely adopted practice to shorten development-cycles [12]. The

Cameleon Reference Framework [4] revealed several shared

models between different proposals. Most of them start with a task

model, and then follow an incremental abstract-to-concrete

transformational process through several transitional models, such

as an abstract one, a modality independent one and several

concrete ones to consider specific platform capabilities.

Recent research proposes to execute models instead of

transforming them into executable code [11]. This has the

advantage that models can be still edited while already in

execution, facilitates experimental prototyping and model

observation at runtime to analyze user behavior.

In this paper we present our approach to design multimodal

interaction techniques that we present and discuss in line with

preceding research about interaction techniques descriptions, such

as in InTml [9] and ICO [14] but focus on a comparison with

NiMMiT [1], which is to the best of our knowledge the most

recent proposal.

Like NiMMiT, our approach combines a data flow with a state-

chart description with the overall goals to allow designers

communicate about the functionality of an interaction technique

and to offer a platform that can directly execute the design models

to enable rapid prototyping and comparison of different

interaction technique variants for user testing.

The intention of our model-based MINT design notation [8] is to

consider the problems and drawbacks that have been identified by

the authors of NiMMiT in [16]:

1. The state explosion for complex interaction technique

designs that we tackle by separating the design into two types

of models: statecharts for mode and media interactor design

and mappings to define the data flow.

NOTICE: This is the author's version of a work accepted for

publication by WebMedia 2013 for your personal use. Not for

redistribution. Changes resulting from the publishing process,

including peer review, editing, corrections, structural formatting

and other quality control mechanisms, may not be reflected in this

document. Changes may have been made to this work since it was

submitted for publication. A definitive version will be published by

ACM.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

2. The missing consideration of undo steps. These are required

to recover from failed action that the interaction technique

depends on while it is applied; we include the specification of

undo steps as a notation feature in the data flow-based

multimodal mappings.

3. The missing incorporation of output modalities as part of the

model abstraction. In NiMMiT output modalities are added

by custom tasks, which need to be coded or scripted. We

separate the modality design from the interaction technique

design and therefore make both, output media formats as well

as the control modes characteristics re-usable and referable

for the interaction technique design.

The paper is structured as follows: In the next section we present

the basic idea of our approach: First, the interactor-based

modeling of interfaces and interaction resources followed by an

introduction about the multimodal mapping concept. They are

used to synchronize models and combine interactors. We use the

same interaction technique use case as it was presented for

describing and evaluating NiMMiT: the Object-in-Hand metaphor

to explain our approach and to ease the comparison between

NiMMiT and MINT. Further notations are only discussed briefly,

since they have been already compared to NiMMiT in [3]. Then,

in the next section we compare both approaches in detail and list

downsides and problems of both proposals. The comparison

considers: the design models, the capabilities to model multimodal

interactions, the capability to reuse existing models, error handling

and iterative prototyping features. Finally, in the last section we

conclude our approach.

2. MODELING INTERACTION

TECHNIQUES
In [1] two different approaches for interaction modeling have been

identified: State-driven notations based on formal mechanisms of

finite state machines, such as the Harel State Tables [10] and data-

driven approaches that define activities and their connections

using data input and output ports. Following [1] in the interaction

design domain state-driven notations have been used in ICO [14]

and the Interact Objects Graph [5], whereas data flows have been

applied in inTml [8], and Icon [6]. A data flow notation is also

used in iStuff [17] to interconnect devices and in the Open

Interface Framework [18] to compose multimodal interactions by

combining device drivers, with filters and fusion algorithms. In

data flow notations the control flow is managed by the data and

therefore the major part of the control is defined inside the

interconnected components. State-driven notations explicitly

define the control by transitions and conditions. In [1] the authors

mention a study that revealed that the lack of data handling is a

restricting aspect for interaction technique modeling. Further on,

they state that with data flow notations the enabling and disabling

of parts of an interaction technique can only be designed by

complex structures. These motivated them to propose NiMMiT

that merges both types of notations into “easy-to-learn and easy-

to-read diagrams” [1].

3. MINT MULTIMODAL INTERACTION

MODELING
Our approach on modeling multimodal interaction in based on

three types of diagrams: UML class diagrams, SCXML-based

statechart models, and a custom flow chart-based mapping

notation that interconnects statecharts and is based on the

multimodal relationships defined by the CARE properties [15].

As a running example to explain our approach we refer to the

same interaction technique that has been used as a case study in

NiMMiT, the Object-In-Hand metaphor that we briefly present in

the next section. A detailed description and evaluation of this

metaphor can be found in [2].

3.1 The Object-In-Hand-Metaphor
The Object-In-Hand metaphor is a two-handed interaction

technique that is utilized in 3D worlds where common tasks are

navigation, object selection and object manipulation.

The technique eases object manipulation and implements a

sequential process: First the user points to an object, which then

gets highlighted. The user confirms the selection by a click using

the pointing device button and then uses the non-dominant hand

+move()
+rotate()

+origin_x : int
+origin_y : int
+x,y,z : int
+face : string
+texture : string
+rotation : int

Class1::3DObject

Fig. 1. Static model of the 3DObject.

3DObject:CUI

initialized

displayed

hidden

position

highlighted

positioned

display

displaying

highlight
unhighlight

position

hide

selected

select

select_

texture

select_

face
rotating

stopped

face texture

deselect

stop
rotate

Fig. 2. Statechart of a 3D object to describe the behavior of its

graphical presentation.

GestureInteractor

DominantHand.PointingDevice Non-DominantHand

stopped

move

stopped

stopped

moving

move
stopped

move

clickedwaiting click

grabbing

released

grab
open

moving

rotating translating

rotate

move

grab

move_away

move_away

Fig. 3. Statechart of the control modality.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

to move the object to the center of the 3D scene by a grab gesture

(a closed hand) towards the dominant hand. As long as the closed

hand remains near the dominant hand holding the pointer, the

object can be manipulated. In the NiMMiT case study changes of

object faces and textures can be manipulated with the dominant

pointing hand and object rotation is supported by rotating the non-

dominant while it remains closed. Finally, with a throw away

gesture the centralized object can be moved back to its original

position in the 3D scene.

3.2 Interactor Modeling
With the MINT framework, multimodal user interfaces are

assembled by interactors. An interactor mediates information

between a user and an interactive system. It can receive input from

the user to the system and send output from the system to the user.

Each interactor is specified by a statechart that describes the

interactor’s behavior and uses a data structure to store and

manipulate data that it receives from or sends to other interactors.

We use UML class diagrams to specify the data structure. Figure 1

depicts the class definition of the 3DObject that contains the

attributes and member functions that can be accessed by the

mappings.

Figure 2 presents a concrete interactor that specifies the behavior

of a 3D object representation that can be manipulated using the

Object-in-Hand metaphor. During the application and before its

presentation in the 3D scene it is positioned based on the pre-set

object coordinates. While it is displayed as part of the scene, it can

be highlighted and then be selected for manipulation. During the

object selection either the face or the texture can be set and the

object can be rotated simultaneously to its manipulation.

A control mode, like the two-handed gesture interactor for

performing the Object-In-Hand metaphor, depicted in figure 3, is

specified by a statechart as well: It distinguishes between a

dominant and a non-dominant hand that it processes in parallel. It

assumes that the user interacts with a pointing device in the

dominant hand that additionally offers a button. For the

implementation of the interactors, the statecharts get instantiated

as state machines and implement the API to the device driver to

access a modality or to the final interface representation of the 3D

object. Different to data flow-based implementations that black-

box their components [18], [17] the statechart represents a model

to the driver to reflect the component’s relevant behavior. It can

be used for the interaction by querying for active states or by

subscribing to get notified about state changes. Further on, the

data flow can be controlled, which we describe in the following

section.

3.3 Multimodal Mappings
Multimodal mappings connect interactors. They are defined at

three different levels of abstraction:

 Application level: A multimodal mapping that connects
specific interactor instances; e.g. “If the ‘confirm
reservation’ button is pressed then close the window.”

 Interactor level: A mapping that is pre-defined together
with the interactor designs (“the meta level”) to be used
later on for concrete application development. E.g. “Each
time a button is pressed play a ‘click’ sound”.

 Metaphor level: A mapping that specifies an interaction
paradigm, such as e.g. a “drag-and-drop” or a “double-
click” that was prepared to work with the designed
interactor set.

Figure 4 depicts the relevant mappings to specify the Object-In-

Hand interaction technique to manipulate the 3D object interactors

using the gesture interactor. We use a custom notation: Boxes with

rounded edges stand for “observations” of state changes. Boxes

with sharp edges define “actions”, which are backend function

calls (FC), event triggers or the activation of another mapping.

Observations and actions are connected by an operator that

specifies a relation between the observations. The default relation

is a sequential one „S“, which defines a top-down sequential

processing of the observations. Actions are always processed

sequentially. Further operators are based on the CARE properties

[17]: A complementary “C” relation set observations that

complement each other and need to be retrieved in a temporal

window Tw. An assignment “A” requires a set of observations of

a specific mode, redundant “R” relations require at least two

observations from different modes, to execute the actions, and

equivalent “E” relations define alternative observations.

The Object-In-Hand interaction technique is composed by five

multimodal mappings: Two interactor level mappings

(“Highlighting”, “Selection”) and three mappings at the metaphor

level.

Both interactor level mappings define the way that the pointing

device is used to control the concrete media representation of the

interface. Interface highlighting happens if the pointing device is

directed to a 3D object. Thus, if the pointing device remains for a

certain amount of time in the same position, it is assumed to be

“stopped”, which evaluates the first observation of the

highlighting mapping to true and sets the coordinates of the

x,y = PointingDevice.stopped

obj=FC.collision(x,y)
S obj.highlight

PointingDevice.clicked

obj=3DObject.highlighted
C obj.select

x1,y1 = PointingDevice.moving

x2,y2=Non-DominantHand

C n_x,n_y,offset=FC.calculateOffset(x1,y1,obj)

FC.proximity(x1,x2,y1,y2)

Tw<0,3sNon-DominantHand.grabbing

obj = 3DObject.selected

obj.move(n_x,n_y)

Non-DominantHand.move_away S

objs = 3DObject.selected obj.move(obj.origin_x,obj.origin_y)

Highlighting

Selection

Object in Hand and Moving while grabbing

Object Withdrawal

obj.deselect

d = Non-DominantHand.rotating S

obj = 3DObject.selected

obj.rotate(n_d)

Object Rotation

n_d = FC.calculaterRotationOffset(obj,d)

Non-DominantHand.grabbing

Fig. 4. The multimodal mappings used to model the Object-in-Hand interaction technique.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

pointer. Since the mapping specifies a sequential relation, only

after the coordinates of the stopped pointer are known the

mapping checks for a collision of the pointer with a 3D object. In

case there is a collision, the object is saved in the “obj” variable

and the mapping triggers its action to send a highlight event to this

object.

In the same manner the selection mapping is processed and runs in

parallel to the other mappings. But since it requires an object to be

highlighted while the pointing device button is “clicked” (the

complementary “C” relation), it is connected to the “highlighting”

mapping.

The Object-In-Hand interaction technique is specified by three

mappings. For the sake of brevity we will just describe the Object-

In-Hand mapping, which is the most complex one. Since it

specifies a complementary relation, all observations are processed

at the same time, in a temporal window of Tw = 300ms. The

arrowless lines define this mapping as a binding: As long as the

observations remain true, updated variables of the observations are

directly feeded into sequential processing of the actions. The

actions calculate the object offset to the center of the scene and

then moves the selected object.

4. COMPARISON with NiMMIT
In this section, we compare MINT with NiMMiT [1], which was

to the best of our knowledge the first notation for modeling

multimodal interaction techniques that combined a state-driven

with a data flow-driven modeling. Other, data flow-driven

notations have been already evaluated by the authors of NiMMiT

in [3].

This section is structured into several subsections. First we briefly

describe the NiMMiT notation using the Object-In-hand use case,

then we compare both notations in detail by analyzing their design

models, the capacity to consider multimodal interaction, identify

mechanism to support reuse and error management, and finally

discuss their processes to support iterative prototyping.

4.1 NiMMiT
Figure 5 depicts the NiMMiT diagram of the Object-In-Hand

interaction technique as presented by the authors in [2]. NiMMiT

diagrams can be read like state transition diagrams. Thus, an

interaction has a start and end state, depicted as cycles and several

intermediary states connected by transitions and task chains.

Events, generated by user inputs trigger a task chain that is

depicted as a shaded rectangle. Task chains describe a sequential

process of interconnected tasks. Each task (e.g. “Calculate

Offset”) can exchange data using input and output ports (e.g.

“offset”, “origin”) with other tasks of the same chain. The

geometry of the black symbol defines the data type. Using labels,

data can be shared over the entire diagram and between task

chains. Labels are depicted beside a task chain (e.g. “selected”)

and are connected to input or output ports. After a task chain has

been processed a transition to the next state is performed.

NiMMiT models can be-reused in a hierarchical structure. For

instance the “Select Object” task is specified in a different model.

4.2 Design Models
The NiMMiT notation implements the requirements to be event-

driven, state-driven, data flow-driven, and the support for

hierarchical reuse. The inclusion of all four aspects in one single

diagram is an advantage of the notation.

MINT requires three different types of models: class diagrams,

statecharts, and multimodal mappings, but captures the interaction

technique specification by the multimodal mapping notation. Both

approaches use a proprietary notation that needs to be learned.

The distribution into a set of multimodal mappings to compose an

interaction technique specification of MINT solves the state

explosion problems from NiMMiT with complex interaction

techniques. Since all MINT mappings are processed in parallel by

default, no explicit transitions need to be added. An example is the

handling of the “gesture_moveaway” event that is used to finish

the interaction technique use and moves the manipulated 3D

object back to its original position. With MINT the “Object

Withdrawel” mapping is always active by default (figure 4).

With NiMMIT (figure 5), explicit transitions have to be defined

for each new state in that the “gesture_moveaway” event should

be supported. MINT also supports sequential composition of

mappings, to specify that one successful mapping can activate

another mapping and therefore reflect the default behavior of

NiMMiT. But in our experience this behavior is rarely needed. A

strict prevention of a certain behavior that was available in a

previous context irritates users. Often certain behavior also does

not need to be restricted explicitly: For instance, it is not a

problem that the “gesture_moveaway” gesture is also active in the

case that no object has been selected. Much more frequently, we

have experienced commands that have been predefined to control

a certain interface, in that a specific interaction technique is

embedded and therefore needs to consider predefined commands.

An example are the interactor-level mappings that are common

interface commands and are reused in the interaction technique

and need to be considered to be used in all subsequent steps of the

interaction technique. Using NiMMiT a command that always can

be processed can only be modeled by adding transitions to all

states of the interaction technique specification.

4.3 Multimodal Interaction
Both notations consider multimodal interaction. In NiMMiT

sequential, parallel and equivalent relations are implemented by

event-based conditions with the transitions (and, or). With MINT,

the operators that connect observations with actions are used to

specify: sequential, complementary, assignment, equivalent and

redundant relations. Additional, with MINT, a temporal window

can be set to specify temporally related events.

Different to MINT, NiMMiT does not explicitly design the

capabilities of modalities. Instead, it requires modalities to trigger

events to that an interaction technique can react. Events can be

grouped into “families” according to their originating modality or

device. Whereas it preserves simplicity, which was one of the

design goals of NiMMIT, this approach has two limitations:

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

First, output modalities need to be controlled by custom scripted

tasks, as the authors mentioned in [1]. With MINT there is no

difference in the design and usage of input (that we call mode) and

output modalities (which we call media). Figure 6 illustrates an

example that adds a second modality to an existing mapping that

specifies object highlighting: a confirming “clicking” sound that is

played each time an object gets highlighted. There are two ways to

design this behavior with MINT. One option is to model the

redundant output (visual highlighting and sound output) as an

application level mapping like shown in figure 6a using the

redundant operator. The other option is a more abstract interactor

level mapping definition that defines that always, if an object is

highlighted (independently if it was triggered by the pointing

device), a sound should be played.

Fig. 5. The NiMMIT model for the dominant hand part of the Object-in-Hand interaction technique. Taken from [[1]]

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

Second, to our knowledge, with NiMMiT, a data flow can be

specified only between tasks. Tasks of different task sets can

exchange data using variables that are called labels. But data input

or output from modalities is not considered explicitly in the design

notation. An example is depicted in figure 5 by the

“PointingDevice2.Move” event triggering the transition

originating from the “OiH” state. The task set that is activated by

this transition consumes data from the “offset” label that has been

calculated by a preceding task set. But which modality is used to

produce the output position data is hidden within the “Calculate

New Pos” task. In MINT the data flow between a modality and the

interaction technique is specified explicitly. Thus, for instance in

the “Object In Hand” mapping of figure 4, the data flow of the

moving pointing device is set to move the 3D object (as long as it

remains in proximity to the non-dominant hand).

4.4 Reuse
An interaction technique frequently includes reoccurring elements,

such as tasks to select, remove or confirm. Thus, supporting reuse

when modeling new interaction techniques prevents re-designs of

already existing techniques.

NiMMiT supports encapsulation of tasks for a hierarchical reuse.

Such a task encapsulation is used in the Object-in-Hand NiMMiT

model depicted in figure 5. The “Select Object” task has been

separately designed, since object selection can be considered a

very common task, and therefore has been reused for the Object-

in-Hand model.

Different to the explicit reference in NiMMiT, in MINT a set of

mappings without the need for direct references defines an

interaction technique. This has the advantage that if an interaction

technique depends on several reusable tasks that should be

available in all of the states of the new interaction technique there

is no need to explicitly reference the included component.

From the ease-of-use perspective the implicit reference (by

existence) is rather hard to use as it requires the designer to know

about all active mappings. But often most of the mappings are

defined at the interactor-level and are connected to a specific

modality or device. Thus, like in our example in figure 4,

mappings define actions or events for a specific device, like the

pointing device, which should be always used for selecting and

highlighting objects. In practice interactor level mappings are easy

to memorize since they usually define the default actions for a

specific modality or device.

4.5 Error Handling
NiMMiT does not include error handling to recover from a failure

that happens when an interaction technique is used [16].

In MINT, multimodal mappings can consider error cases. Figure

6c illustrates how an error handling can be defined to undo an

action that has been partly done using an interaction technique.

The mapping defines a drag and drop interaction technique

between 3D objects that are stored in two different boxes. By

defining a fail-case for the second operator (the complementary

relation) the mapping ensures that after a user has started to drag a

3D object, it is returned to its origin box if the user has failed to

drop it to another box.

S
obj=FC.colision(x,y)

obj.highlightx,y = PointingDevice.stopped
R

Sound.click

S

dst=Box.highlighted

C

item.drag

dst.drop(item)

Item= 3DObject.selected

src=item.parent

Non-DominantHand.released

failsrc.drop(item)

Non-DominantHand.grabbing

Sound.clickA3DObject.highlighted

c) Drag-and-Drop

a) Redundant Output b) Assignment of Output

Fig. 6. Mappings with redundant output (a+b) and error handling (c).

Fig. 8. The adopted scxmlgui editor to design SCXML-based

statesharts.

3DObject:CUI

initialized

displayed

hidden

position

highlighted

positioned

display

displaying

highlight
unhighlight

position

hide

selected

select

select_

texture

select_

face
rotating

stopped

face texture

deselect

stop
rotate

drag
 /parent.remove(self)

drop
dropped dragging

H

Fig. 7. Redesign of the 3DObject Statechart to consider drag-and-

dropping.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

4.6 Iterative Prototyping
Both, MiMMiT and MINT offer an application framework to

interpret the diagrams at runtime to quickly test and compare

design alternatives without much coding effort. To further support

the designer creating new interaction techniques both notations are

tool supported and save their models in XML. According to [1]

the NiMMiT process is a sequential one: After a NiMMiT model

has been designed with a tool, it is saved in XML, and the loaded

and executed in the application framework.

In MINT the initial deployment of the interaction technique to the

platform follows the same process like NiMMiT, but requires two

design tools: One, an adopted version of the scxmlgui editor [13],

is used to specify the statechart for describing the behavior of the

widgets and the interaction resources, and a second one to design

the multimodal mappings. Figure 8 shows a screenshot of the

former one.

After the platform has been started with the initial deployment of a

prototype, both design tools can be connected to the platform to

observe the mappings and states of the statecharts being activated

while the interaction technique is used. In MINT the iterative

prototyping cycle length has been further reduced: statecharts can

be manipulated when the application is running with the

restriction that a state cannot be removed while it is active. An

animation of the active states in the design tool supports the

designer to identify these states. Manipulations at runtime ease to

correct usability problems and to fix errors when they occur.

Figure 6c) depicts a further interaction technique, a drag-and-drop

like technique that enables a user to grab 3D objects out of a box

into another one. This mapping can be added as a new mapping at

system runtime without the need to restart running applications.

But for the mapping to function with the 3D object, the object’s

behavior needs to be adjusted by adding two new states:

“dragging” and “dropped” to the statechart like depicted in figure

7.

We have evaluated the MINT framework against the requirements

of the W3C multimodal initiative, which requires a multimodal

toolkit to implement a structural mechanism for user interface

composition, an explicit control structure, an extensible event

definition mechanism, consider data modeling, and offer reusable

components in [8]. Further on, the MINT framework has been

classified by using the characteristics for multimodal frameworks

proposed by Dumas et.al. [7]. An initial performance analysis has

been performed [8].

5. CONCLUSION
This paper presents MINT, a model-based approach to design

multimodal interaction techniques. The graphical notation

combines statecharts to design modalities and media features, uses

data flow based mapping, and is targeted to allow the explorative

design of multimodal interactions to compare different variants

without much coding effort.

Previous approaches can be classified in either statechart-driven or

data flow-driven proposals. NiMMiT was the first graphical

notation to combine both, but suffers from a set of limitations:

State explosion for complex models, no explicit design support for

output modalities, and missing error handling.

MINT addresses each of these aspects by separating statechart and

data flow into two different complementary models and a notation

for defining recovery steps inside the definition of the interaction

techniques. We illustrate our approach by using the same use case

that has been used for describing NiMMiT: The Object-In-Hand

interaction technique. We demonstrate further advances of MINT

that reduce the iterative prototyping cycles by supporting model

manipulation at runtime to improve usability and inconsistencies.

6. ACKNOWLEDGMENTS
Sebastian Feuerstack is grateful to the Deutsche

Forschungsgemeinschaft (DFG) for the financial support of this

work.

7. REFERENCES
[1] Boeck, J. D.; Vanacken, D.; Raymaekers, C. & Coninx, K.

(2007), 'High-Level Modeling of Multimodal Interaction

Techniques Using NiMMiT', Journal of Virtual Reality and

Broadcasting 4(2).

[2] Boeck, J. D. ; Cuppens, E.; De Weyer, T.; Raymaekers, C. &

Coninx, K. (2004), Multisensory interaction metaphors with

haptics and proprioception in virtual environments, in

'Proceedings of the third Nordic conference on Human-

computer interaction', ACM, New York, NY, USA, pp. 189-

-197.

[3] Boeck, J. D.; Raymaekers, C. & Coninx, K. (2007),

Comparing NiMMiT and data-driven notations for

describing multimodal interaction, in 'Proceedings of the 5th

international conference on Task models and diagrams for

users interface design', Springer-Verlag, Berlin, Heidelberg,

pp. 217--229.

[4] Calvary, G.; Coutaz, J.; Thevenin, D.; Limbourg, Q.;

Bouillon, L. & Vanderdonckt, J. (2003), 'A Unifying

Reference Framework for Multi-Target User Interfaces',

Interacting with Computers 15(3), 289--308.

[5] Carr, D. A. (1997), ‘Interaction Object Graphs: An

Executable Graphical Notation for Specifying User

Interfaces’, Formal Methods in Human-Computer

Interaction, Springer, pp. 141--155.

[6] Dragicevic, P. & Fekete, J.-D. (2004), Support for input

adaptability in the ICON toolkit, in 'Proceedings of the 6th

international conference on Multimodal interfaces', ACM,

New York, NY, USA, pp. 212--219.

[7] Dumas, B.; Lalanne, D. and Oviatt, S. (2009), 'Multimodal

interfaces: A survey of principles, models and frameworks',

Human Machine Interaction, pp. 3--26.

[8] Feuerstack, S. and Pizzolato, E. (2012 Engineering Device-

spanning, Multimodal Web Applications using a Model-

based Design Approach, WebMedia 2012, the 18th

Brazilian Symposium on Multimedia and the Web, October

15-18, 2012, São Paulo/SP, Brazil

[9] Figueroa, P.; Green, M. & Hoover, H. J. (2002), InTml: a

description language for VR applications, in 'Proceedings of

the seventh international conference on 3D Web

technology', ACM, New York, NY, USA, pp. 53--58.

[10] Harel, D. (1987), 'Statecharts: A visual formalism for

complex systems', Sci. Comput. Program. 8(3), pp. 231-274.

[11] Lehmann, G.; Blumendorf, M.; Feuerstack, S. & Albayrak,

S. (2008), Utilizing Dynamic Executable Models for User

Interface Development, in T. C. Nicholas Graham &

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2013. The definitive version will be published by

ACM.

Philippe Palanque, ed., 'Interactive Systems - Design,

Specification, and Verification', Springer-Verlag Gmbh.

[12] Meixner, G.; Paterno, F. & Vanderdonckt, J. (2011), 'Past,

Present, and Future of Model-Based User Interface

Development', i-com 10(3), pp. 2-11.

[13] Morbini, F. (2011), 'Scxmlgui',

http://code.google.com/p/scxmlgui/, last accessed 08/01/13

[14] Navarre, D.; Palanque, P.; Bastide, R.; Schyn, A.; Winckler,

M.; Nedel, L. & Freitas, C. (2005), A Formal Description of

Multimodal Interaction Techniques for Immersive Virtual

Reality Applications, in Maria Francesca Costabile & Fabio

Paternò, ed., 'Human-Computer Interaction - INTERACT

2005: IFIP TC13 International Conference, Rome, Italy',

Springer-Verlag GmbH, , pp. 170.

[15] Nigay, L. & Coutaz, J. (1997), Multifeature Systems: The

CARE Properties and Their Impact on Software

Design'Intelligence and Multimodality in Multimedia

Interfaces'.

[16] Raymaekers, C.; Vanacken, L.; Boeck, J. D. & Coninx, K.

(2008), High-Level Descriptions for Multimodal Interaction

in Virtual Environments, in 'Proceedings of CHI 2008'.

[17] Ringel, M.; Tyler, J.; Stone, M.; Ballagas, R. & Borchers, J.

(2002), iStuff: A Scalable Architecture for Lightweight,

Wireless Devices for Ubicomp User Interfaces, in

'Proceedings of UBICOMP 2002'.

[18] Serrano, M.; Nigay, L.; Lawson, J.-Y. L.; Ramsay, A.;

Murray-Smith, R. & Denef, S. (2008), The openinterface

framework: a tool for multimodal interaction., in 'CHI '08

Extended Abstracts on Human Factors in Computing

Systems', ACM, New York, NY, USA, pp. 3501--3506

http://code.google.com/p/scxmlgui/

