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ABSTRACT 

Nowadays the web is an ubiquitously available source of 

information that can be accessed through a broad range of 

devices, such as smart phones, tablets and notebooks. Although 

web applications can be used through several devices, they are 

controlled and designed for a one-to-one connection type of 

interaction, which prevents device-spanning multi-modal 

interactions. 

We propose a model-based run-time framework to design and 

execute multi-modal interfaces for the web. Different to a model-

based design that implements reification, a process to derive 

concrete models from abstract ones by transformation, we design 

interactors that keep all design models alive at run-time. 

Interactors are based on finite state machines that can be inspected 

and manipulated at run-time and are synchronized over different 

devices and modalities using mappings. We show the 

expressiveness of state charts for modeling interactions, 

interaction resources, and interaction paradigms.  

We proof our approach by checking its conformance against 

common requirements for multimodal frameworks, classify it 

based on characteristics identified by others, and present initial 

results of a performance analysis. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User 

Interfaces - Input devices and strategies, Interaction styles, 

Prototyping; D.2.2 [Software Engineering]: Design Tools and 

Techniques – User Interfaces.  

General Terms 

Design, Human Factors, Languages. 

Keywords 

Model-based User Interfaces, Multimodal Interfaces, Web 

Application Development, HCI. 

 

1. INTRODUCTION 
With the ubiquitously available word wide web information can 

be accessed from any place and any device connected to the 

internet. Just a web browser is required to search the web or even 

run web applications in the cloud. 

Different to graphical interfaces of web applications that are often 

adapted to consider different screen sizes, the support for different 

control modes is often limited to the classic keyboard and mouse 

based input control. Input controls that go beyond basic touch 

gestures are not considered or are implemented for specific 

domains like an in-car control that uses wheels, a touchscreen or 

voice commands. Multimodal applications that combine several 

modes into one single application are even more complex to 

implement. Model-based software development has been 

successfully performed to support the semi-automated generation 

of interfaces for different platforms (like HTML [9], 

XHTML+Voice [9] or even 3D interfaces [9]). But to our 

knowledge there are still no frameworks available that support the 

model-based design and execution of multimodal interfaces that 

can enable a flexible combination of modes and media based on 

the preferences of the user. 

We implement web applications that enable the user to switch 

devices and modalities or even combine them on demand. The 

basic idea is to offer a model-based design of custom interactors 

that are self-executable and that can be distributed and 

synchronized through several devices and modalities. Different to 

model-based user interface design (MBUID) that generates 

isolated interfaces for different platforms by a structured abstract-

to-concrete modeling of interaction, we design interactors that are, 

once they have been designed, assembled by user interface 

builders to form a multi-modal interface. Therefore, we adapt 

classical user interface building instead of requiring the developer 

to learn new languages and processes to create interfaces. 

The paper is structured as follows: The next section discusses 

related work. Thereafter, in section 3 we present our modeling 

approach that re-uses common MBUID models, such as task, 

abstract and concrete user interface models for the interactor 

design. Section 4 explains how the interactors get instantiated at 

run-time and are executed as part of a web server. Section 5 

presents an evaluation of the platform based on practitioners’ 

requirements (5.1), common characteristics for multimodal 

frameworks (5.2) that have been identified by others and states 

initial results of a performance evaluation (5.2). 

2. RELATED WORK 
MBUID has been applied for a long time to reduce the 

development costs of user interfaces to enable them running on 

different platforms. Languages, such as USIXML [14] and tools 
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such as [12] have been proposed to form a structured 

development process. These processes typical start from a very 

abstract description of the user interface tasks to a more concrete 

one considering the characteristics of certain modalities (a 

concrete user interface model) and end up with a final user 

interface to be executed on a specific platform [3]. This process 

through several abstractions requires anticipation skills to 

understand how changes on an abstract level will be reflected in 

the final user interfaces [14]. Most of the approaches that we are 

aware of are focusing on design-time support.  

Different to these approaches our interactor-based interfaces can 

be flexibly extended to new modes and media just by adding new 

interactors and mappings to a running system. Our approach is 

inspired by the findings of the iCARE platform [13] that supports 

building multimodal interaction out of components that are 

connected based on the CARE properties. These properties 

describe the relations between different modes, such as their 

complementary, redundant or equivalent combination. 

Some frameworks have been already proposed to ease the creation 

of multimodal interaction controls like the Open Interface 

Framework [10] that enables a developer to assemble multimodal 

controls out of components. It focuses on bridging different 

interaction technologies by enabling the interconnection of device 

drivers and signal processing algorithms to form new kinds of 

multimodal interaction setups. But the specification of how an 

application is controlled with an assembled interaction setup is 

still done at the source code level. 

We are using the same model abstractions as initially summed up 

by the CAMELEON framework [3], but applying a development 

process that conforms to classical user interface construction: 

Using an user interface builder that offers a palette of widgets 

(that we call interactors) that can be directly assembled to form a 

multimodal interface. This is an approach that has been followed 

by Gummy [11] as well, but was focused to create different 

graphical interface for different sized screens and has to our 

knowledge no support for extending the existing widget set. User 

interface builders ease the development of interfaces by offering 

pre-defined widgets but lack the possibility to add new ones or 

require the developer to enhance the tool itself on the source code 

level. Our approach tackles this issue. Therefore, we propose to 

construct interactors based on State Chart XML (SCXML). 

SCXML1 is a general-purpose event-based state machine 

language that is based on Call Control eXtensible Markup 

Language and Harel State Tables [7]. It is an easily 

understandable language composed of only few basic concepts 

(such as states, actions, transitions and events). 

Direct model execution has the advantage that even at run-time 

the models can be the targets of manipulation to consider context 

changes that could not be predicted at design-time. The 

unpredictable context-of-use has been named the effective 

context-of-use [1] as opposed to the predictive context-of-use that 

can be considered at design-time. We call MBUID approaches 

that enable direct model execution Model-driven Run-time-

Environments (MRE). The Context Mobile Widget (COMET) 

architecture style [4] is an early MRE approach that offers self-

descriptive interactors that are able to handle a set of different 

contexts-of-use. At run-time the COMET interactors benefit from 

                                                                 

[1] 
1
 http://www.w3.org/tr/2011/wd-scxml-20110426/, last checked 

august 25, 2011. 

querying a semantic network to figure out a transformation path 

for an adaptation goal. The Multi Access Service Platform 

(MASP) [2] advances model execution one step further and 

provides all the logic that defines the behavior of an interface 

inside the models. Therefore, several meta-models (and a meta-

meta-model) are provided that describe the construction of 

MBUID. Like COMETS, MASP has limited support for 

considering multimodal interfaces by supporting just equivalent 

multimodal relations. 

3. MINT RUN-TIME MODELS 
Figure 1 illustrates the six different types of models that we use to 

specify a multimodal interface. A task model identifies the tasks 

that are relevant for the application. An abstract model captures 

the basic behavior of the interface independent of the mode or 

media being used. Concrete user interface models complement the 

abstract model by considering platform specific behavior and 

data. Interaction resource models describe the characteristics and 

features of physical (e.g. a mouse, or a smart phone) or virtual 

devices (e.g. gesture recognition). A final interface model stores 

interface widget templates (source code fragments) for a specific 

platform. Finally, a mapping model specifies the way model 

elements are connected to each other. Mappings link at least 

interactors of two different models, whereas a source code 

fragment is directly connected to a corresponding concrete model 

interactor. If a mapping connects an interaction resource model 

interactor, we call the mapping “multimodal”. Otherwise we refer 

to the mapping as a “synchronization mapping”, as it is used to 

synchronized interactors between different levels of abstraction. 

We call the basic model element an interactor and define it based 

on the YORK interactor [5] as  

“an executable component in the description of an interactive 

system that encapsulates a state, the events that manipulate the 

state and the means by which the state is made perceivable to the 

user of the system.”  

Different to the original definition of the YORK interactor we 

explicitly require an interactor to be executable. This has the 

advantage that there is no gap between what is designed and 

executed and has the result that we instantiate interactors on all 

model abstraction levels at run-time. Thus, one abstract interactor 

that represents a choice between several options is instantiated 

together with its related concrete interactors, for instance a 
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Figure 1. The run-time models of a multimodal application. 
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graphical pull-down menu or a speech prompt with several 

corresponding answers to choose from. 

We specify interactors by state charts. On the one hand this 

reduces the entry barrier for developers since no new language has 

to be learned. On the other hand state charts can be directly 

transformed to state machines that can then be executed.  

In the following subsections we describe the most interesting 

models in greater detail. A task model and templating mechanisms 

have been discussed earlier [12][1] and are out of the scope for 

this work. 

3.1 Abstract Interactor Model (AIM) 
The abstract interactor model describes the general behavior of all 

user interface elements that can be used in an interface 

independently from the control mode or the media being used for 

presenting the element to the user. Figure 2 depicts the entire 

interactor class hierarchy of the abstract interactor model. The 

basic abstract interactor object (AIO) that all other abstract 

interactors are derived from includes the basic functionality of the 

core interactor class: a unique name, an observable state, the 

functionality to instantiate itself as a state machine and to process 

events. Further on, an AIO interactor implements a basic interface 

navigation enabling the user to navigate between previous/next 

and parent/child (through the AIContainer) interactors. An AIO 

interactor usually is presented in an interface within a certain 

context (AIContext) that clarifies to the user the relevance of the 

interactor (e.g. by a textual description, or an interactive help). 

Additionally, an interactor has one or several related navigation 

shortcuts (AIReference) like a hotkey or a label that can be used 

to directly navigate to the interactor. 

The two most important classifications of the AIM are the 

distinction between input and output as well as continuous and 

discrete types of interaction. The former ones are organizational 

structures if they are related to output, for instance: lists 

(AISingleChoice), containments (AIContainer) and commands, or 

choices like individual list elements if they are input-related. 

Different to a discrete interactor that defines an identifiable and 

referable setting, a continuous interactor can only be controlled 

and observed relatively to its previous settings. Examples are a 

dimmer to control the light level or a progress bar of a graphical 

interface.  

Figure 3 illustrates the behavior of the AICommand interactor by 

a state chart. This interactor is used to enable a user initiating 

single actions. It’s general lifecycle has been derived from the 

abstract AIO interactor that specifies an interactor to be 

“initialized” upon startup, “organized” if the navigational 

relationships to its neighbors have been computed, “presenting” 

while it is part of an active user interface, and finally “suspended” 

after it disappeared from the active user interface presentation. 

During the time an interactor is in the “presenting” state the 

navigation is possible by moving the user focus from one 

interactor to the next or previous one. Thus, as soon as an 

interactor receives a “next” event while it is “focused”, it figures 

out its next neighbor and defocuses itself after sending a “focus” 

event to the next interactor. 

What makes the AICommand interactor special is its capability to 

store an activation state that runs in parallel to the “presenting” 

super state. If the interactor is in state “presenting” and in the 

focus of the user it can be “activated”. A possible concrete 
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Figure 2. The interactor relations on the abstract level. 
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Figure 3. Behavior of the abstract AICommand interactor. 
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interactor that matches this abstract one is a button that we will 

present later on. 

An example of a continuous interactor is shown by figure 4. It 

implements the same overall lifecycle as the AICommand 

interactor and represents an output-oriented interactor. Therefore, 

the interactor listens to data from a streaming source while it is 

being presented, which we specify by an “on_entry” statement. 

Depending on the data “d” that it retrieves, the interactor changes 

its state to be in “regressing” or “progressing”. Upon initialization 

a minimum, maximum as well as a threshold can be defined. 

3.2 Concrete Interactor Model (CIM) 
The concrete model is in charge of representing an interface on a 

specific mode and media. Each platform has its own concrete 

model with two constraints: 

1. It can only enhance the data structure and behavior of 

abstract interactors. Thus, no overlapping definitions 

between AIM and CIM are allowed. 

2. It is required to specify at least one concrete interactor for 

each AIM interactor. Thus, the AIM is the least common 

denominator for all mode and media and it is therefore 

ensured that for an AIM based interface design there is 

always a complete reification to a CIM one. 

Figure 5 illustrates an excerpt of a graphical CIM with the 

relations to the AIM interactors. Graphical interfaces organize 

elements in a coordinate system. This is reflected by the Concrete 

Interactor Object (CIO) that adds the data structure to store 

positions and sizes. Its lifecycle structure is similar to the AIO, 

which eases a direct synchronization, but the state semantic is 

different: It starts by being “initialized”, then enters the 

“positioning” phase during which it is decided e.g. by the task 

model, what other interactors are presented simultaneously. After 

the coordinates for each interactor have been calculated based on 

the layout and screen constraints, it enters “positioned” and 

“displayed” as soon it is presented to the user. Thereafter it can be 

“disabled” or “hidden” from the interface.  

A coordinate system enables directed navigation options by ”up”, 

“down”, “left”, and “right” events. But usually only little 

additional behavior needs to be added by the CIM model, since 

most of the overall behavior is already specified by the AIM. 

Examples for CIO interactors are a gauge meter that implements a 

continuous output or a button that represents a command 

(depicted by figure 6). 

3.3 Interaction Resource Model (IRM) 
Interactor resource interactors specify characteristics of physical 

or virtual devices that are used to interact with a system. Physical 

devices are for instance a mouse, a joystick, or a keyboard. Virtual 

devices describe software that controls hardware like a gesture or 

body movement recognition driven by a webcam or a light or a 

speaker connected to a home automation system. 

Figure 7 shows a part of the IRM and depicts the relations 

between some of the interaction resources (IRs) that we have and 

will present in this section. Like for the other models, IRs are 

modeled as interactors. The IRM distinguishes between mode and 

media IRs. The former represent multimodal control options of 

the user, the latter specify output-only media.  

Figure 8 depicts an aggregated IR representing a mouse. It is 

composed of a pointer, a button and a wheel. Different to physical 

devices like the mouse for which the IR specification is fixed and 

often simple, virtual device IRs are more complex and often are 

designed with a specific application in mind. Figure 9 depicts an 

example of a virtual IR that enables basic user interface 

navigation and selection of elements using the four different hand 

postures and movements shown on the left of figure 9. Green 

colored gloves and a webcam are used to capture the different 
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Figure 6. A graphical button interactor 
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Figure 7. Part of the Interaction Resource Model 
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Figure 5. Excerpt from a graphical CIM 
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postures and their movements in relation to the cam (“closer” and 

“farther”). By the state chart-based design specification design 

decisions can be captured in great detail: First of all, the 

navigation works with only one hand. Next, there is a fixed 

default speed of one second per element specified. Therefore, 

while the previous or next posture is shown, the focus in the 

interface moves to the previous or next element with each “tick”. 

Then, there is a way to dynamically manipulate the navigation 

speed (see “movement” super state of figure 8), which replaces 

the default fixed ticker by considering hand movements (closer to 

or farther from the cam) to generate “tick” events. Finally, there is 

an element selection specified, that on the one hand stops the 

navigation as soon as the select posture is shown and on the other 

hand requires a second posture to actually confirm the selection 

(e.g. for security reasons). 

Now that the three interface models have been presented they 

need to be linked together to actually form a dynamic multimodal 

interaction. Whereas abstract and concrete interactors are 

synchronized by mappings that are currently defined inside the 

state charts, the relations between different IRs and the abstract or 

concrete model are specified by multimodal mappings that we 

present in the following sub-section. 

3.4 Mappings 
We use mappings to connect the various models at system run-

time and distinguish between two elementary types of mappings: 

multimodal mappings and synchronization mappings. The former 

ones a target of a typical application design process, as they are 

used to describe how an interaction resource (mode) is used to 

control an interaction. The latter one are used to synchronize the 

different levels of interactor abstraction and are pre-defined 

together with most of the interactors. 

3.4.1 Multimodal Mappings 
Multimodal mappings connect abstract or concrete interactors 

with interaction resources. They are defined on three different 

levels of abstraction using a custom, flow-like notation: 

· Application level: A mapping that connects specific 

interactor instances; e.g. “If the ‘confirm reservation’ button 

is pressed then close the window.” 

· Interactor level: A mapping that is pre-defined together with 

the interactor designs (“the meta level”) to be used later on 

for concrete application development. E.g. “If a button is 

pressed then play a ‘click’ sound”. 

· Paradigm level: A mapping that specifies an interaction 

paradigm, such as e.g. a “drag-and-drop” or a “double-click” 

that was prepared to work with the designed interactor set. 

Figure 10 gives an example for a multimodal mapping that is 

defined at the interactor level between an IR (a pointer) and 

interface interactors on the concrete, graphical user interface 

level: It defines to change the highlighted graphical UI elements 

based on the current pointing position. It is worth mentioning that 

some IRs, like the pointer, can only be connected to the CUI 

model level and not to the abstract one. This is because the 

pointer is moved in a coordinate system and therefore depends on 

a graphical interface.  

Mappings are specified by a custom flow chart like notation that 

offers three basic elements: observations, actions and operators. 

Boxes with rounded edges describe “observations” of state 

changes. Boxes with sharp edges are used to define actions, which 

are backend function calls or the triggering of events. The 

mapping observes the state of the pointer interactor and gets 

triggered as soon as the pointer enters the state “stopped”. There 

are several operators available that we derived based on the 

findings of the CARE properties that are used to describe 

multimodal relations. The sequence operator “S” that is used in 

figure 10 defines a strict top-down sequence of observations and 

actions. Thus, the mapping of figure 10 waits for the mouse 

pointer to stop, then looks up the concrete interactor that is at the 

current mouse pointer positions and finally checks if this 

interactor is not already in highlighted and therefore in state 

“displayed” (compare with the CIO interactor of figure 6).  
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Figure 9. Used postures (left) and a gesture-based user interface navigation IR 
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Mappings can fail and are then reinitialized automatically. Thus, 

the pointer mapping of figure 10 can fail for instance if no CIO 

can be found at the coordinates where the mouse pointer has been 

“stopped”. 

Figure 11 gives an example for an application level mapping that 

has been designed for a specific application in that a slider and a 

progress bar should be connected so that the slider movements are 

reflected by the progress bar. Even though the example mapping 

can be thought to be used for a concrete a slider and a progress 

bar the mapping itself is defined on the abstract, platform 

independent level by connecting an AIINContinuous with an 

AIOUTContinuous interactor (see figure 4). Thus, a “slider” 

could be as well a dimmer control, and the interactor named 

“volume” a dimmable light for instance. 

The “C” operator that is used in this example defines a 

“complementary” relation. Therefore, the mapping initiates its 

action only if both observations are true at the same time: the 

slider interactor needs to be in state “moving” and the volume 

interactor in state “presenting”. The complementary relation is 

continuous, which is defined by using lines to connect the 

operator “C” without arrows indicating a direction. A continuous 

mapping activates the actions as long as all operations are true and 

deactivates it otherwise. The mapping of figure 10 forwards all 

updates of the slider (stored inside the “data” variable”) to the 

“data” variable of the “volume” interactor) as long as the slider is 

“moving” and the volume is in “presenting” state.  

Finally, figure 12 depicts an example for a paradigm level 

mapping that defines a “drag-and-drop” to be used with an 

interaction resource that offers a pointer and a button, a mouse for 

instance. The pointer is implicitly included by using the mapping 

of figure 10 and a synchronization of “highlighting” to the 

abstract “focused” state.  The Drag-and-Drop mapping utilizes 

temporary window (Tw) constraints to define the maximum 

timespan in which all observations are required to be evaluated to 

true. Further on, a fail statement can be attached to an operator to 

list the actions to recover from a failed observation. For the Drag-

and-Drop such a fail statement is used to recover if the button is 

released while dragging without a target choice in focus. In this 

case the fail statement ensures that all dragged elements are re-

added to the origin choice list. 

3.4.2 Synchronization Mappings 
Synchronization mappings are defined to propagate information 

about state changes between the different abstraction levels of one 

interactor. Mainly between it’s abstract and it’s several concrete 

model representations. Figure 13 depicts such a mapping that is 

specified in the same notation as a multimodal mapping. It 

ensures that a “highlighted” interactor of the concrete model (that 

has been highlighted e.g. by the mouse pointer (see pointer 

mapping, figure 10) is assumed to be in the user’s focus in its 

abstract model representation.  

In an earlier approach, we used “on_entry” and “on_exit” state 

actions to synchronize AIM with CIM interactors and did not use 

separate mappings for model synchronization. This had the 

advantage that all synchronizations get automatically added if an 

interactor is used.  

The disadvantage was an un-wanted dependency of the AIM to 

the CIM models, which prevented introducing new concrete 

model without touching the existing AIM model. 

 

In this section we gave an overview about the models we are 

using to design and combine multimodal interactors by an 

abstract, a concrete and a mapping model. Physical or virtual 

devices are specified by an interaction resource model. The next 

section introduces the MINT platform, which implements a run-

time environment for the models and enables to directly execute 

them, without a transformation to source code. 

4. MINT PLATFORM 2012 
Model-driven design of software is performed by designing 

models and transforming them from platform independent to 

platform dependent ones. Usually this is a process that is 

performed during design-time before the application is started the 

first time and that ends with a final model-to-code transformation. 

There are two main reasons, which made us decide to implement a 

run-time instead of a design-time process: First, different to 

software backend development, user interface development is a 

highly interactive and iterative process. Improving the efficiency 

in including changes in a single iteration would improve the 

overall development speed since changes can be discussed while 

giving the targeted audience the opportunity to experience the 

interface. 

Second, modern user interfaces need to consider context changes: 

different groups of users, devices, environments, cultures, or 

modalities. Often all these potential context-changes cannot be 

considered during design-time; therefore problems often first 

occur during run-time when it is too late to adjust the interface 

using a traditional model-driven development approach. 

s = slider:Interactor.AIO.AIIN.AIINContinuous.moving

C s.data -> v.data

v = volume:Interactor.AIO.AIOUT.AIOUTContinuous.presenting

 
Figure 11. Application level mapping. 

C
dst=AIMultiChoice.focused

C

Tw<0,3s

aois.drag
dst.drop(aios)

src=AIMultiChoice.focused

Tw<0,3s
b=Button.pressed

aios=src.children.all(chosen) b.released

src.drop(aios) fail
 

Figure 12. Drag-and-Drop paradigm level mapping. 

cio = Interactor.CIO.highlighted
S

NOT aio = cio.name:Interactor.AIO.focused
aio.focus

 
 

Figure 13. Synchronization Mapping. 
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Because of that, we implemented a model-based run-time 

environment (MRE) that is executed as part of a web-server. The 

main tasks of the MRE are 1) to instantiate the interactors of the 

Task, AIM, CIM and IRM as state machines, 2) to connect them 

through the mappings, and 3) to synchronize the modes and media 

utilized in an interaction by the user. The platform implements the 

structure of the W3C multimodal framework architecture (W3C-

MMI) [17] and its basic component-based architecture is depicted 

in figure 14. Different to the W3C approach we strictly 

distinguish between mode and media. Thus, media components 

such as a web page are pure output components whereas modes 

implement components that handle user inputs. Therefore, even 

mouse and keyboard events are synchronized inside the 

interaction manager on server side instead of by the browser. The 

left part of the figure shows the server side that consists of a No-

SQL data store with publish/subscribe functionality (RedisDB), 

an asynchronous HTTP Server written in Javascript (NodeJS) and 

an Interaction Manager that manages all the model instances 

written in ruby and the Event Machine Framework written in C 

that enables event-driven I/O based on the reactor pattern with 

high scalability. Since the main processing and fusion of the 

different connected modes and media happens on the server-side, 

all server-side functionality is processed completely asynchronous 

and event-driven.  

Two components of figure 14 have not been discussed so far: The 

Tasks model in the interaction manager and the final HTML 

interface model (FIM-HTML) in the HTTP server. The former 

one is an implementation of a task model interpreter that can 

process a task tree specified in the ConcurTaskTree notation [12] 

and is used to define the overall process of an application. It 

distinguishes between three types of tasks: Interaction In, 

Interaction Out and Application tasks. Each task type has a 

behavior specification lifecycle that has been described earlier by 

the WebTaskModel [1]. The latter one, the final interface model 

(FIM), represents the graphical CIM model interactors by HTML 

templates and a widget library (we use jQuery). 

The client side consists of the real interaction resources 

implementing modes and media, like a browser, head movement, 

posture and gesture recognition, a mouse or a multi-touch surface. 

User input from the modes is forwarded to the IRM, gets 

processed there and then is stored and published in the Redis 

database. The HTTP server subscribes itself to the database to 

receive relevant interactor updates and forwards them to the 

connected browsers.  

5. Evaluation 
Earlier works have suggested several requirements that have to be 

fulfilled for such a framework to be applicable. We will use these 

requirements (5.1) and classification criteria (5.2) to discuss the 

pros and cons of our work and proof the feasibility of a server-

sided procession by an inital performance analysis (5.3). Further 

on, we indent to publish the 2012 version as open source as we 

did with the previous version [7] as well for others to proof and 

further evaluate our approach. 

5.1 Requirements 
As part of the W3C multimodal initiative, [17] has identified 

several requirements a multimodal toolkit should consider from a 

practitioner perspective that we discuss and relate in the following 

to our approach. 

5.1.1 Structuration Mechanism 
[15] notes that structuration mechanisms are required to “define 

the overall user interface composition” and mentions that there is 

currently no fixed overall model and no fixed model to start with 

as well. 

Our approach uses reference integration through mappings that 

can be defined separately from the other models to link their 

elements together based on state change observations that can 

trigger events (actions). A current limitation of our approach is the 

synchronization mappings that sync between the different 

abstraction levels (e.g. between the abstract concrete model) of a 

single interactor. These are currently defined inside the interactor 

to reduce the amount of mappings that need to be created when 

designing an interface. This problem is known as the mapping 

problem [14]. 

5.1.2 Explicit Control Structures 
[15] mentions explicit control structures as a crucial requirement. 

They are 1) hardly distinguishable from other facets, 2) difficult to 

track, and 3) difficult to locate if there are several threads of 

control. 

We proposed a three-folded control structure: a macro-level and 

an inter-interactor as well as an intra-interactor control on the 

micro-level. The macro-level that specifies the overall control 

flow, we rely on a task model, where each task consists of a set of 

active interactor. On the micro-level finite state machines 

implement the control flow (the behavior) of individual 

interactors. Between interactors we use mappings to define their 

control relations. 

5.1.3 Extensible Event Definition Mechanisms 
[15] requires a multimodal toolkit to use events to connect 

interaction channels from different modalities and demands a 

mechanism that “should be extensible so that when a new input or 

output channel is created it is not necessary to rewrite the event 

model” [15].  

Our approach defines an abstract interactor model (AIM) that 

specifies the minimal set of interactors that are required to be 

considered by a new modality (or a certain combination of modes) 

to allow the user a complete control of all interfaces that have 

been designed with our approach. Since we rely on SCXML 
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Figure 14. MINT 2012 Basic technical architecture. 
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based state charts interactor designs, the basic API is to observe 

these state changes or trigger them by events. An extension of the 

event definitions usually has to happen at the concrete model 

level. Thus, an abstract interactor could be extended to react on 

new events that are specific to a certain modality.  

5.1.4 Data Modeling 
[15] requires an explicit data model.  

We distinguish between two types of data models. One that is 

used to capture the data from and present the information to the 

user and another one that is used by the functional backend of the 

applications. The former one is designed using class diagrams to 

express the data and additional functionality that is implemented 

by each interactor. The latter one depends on the application 

domain and could be a database, an enterprise server or web 

services for instance.  

5.1.5 Reusable Components 
User interfaces are made out of components containing visual 

parts, interactive behavior and control structures that repeat 

themselves in different parts of the interface [15]. 

In our approach interactors encapsulate these functionalities and 

represent interface elements as re-usable components. Interactors 

are designed once to specify a concrete way of interaction, like 

e.g. by a widget on a specific platform, a general way of 

interacting on the abstract model or by capturing the interaction 

capabilities of an interaction (as a resource interactor). Once these 

interactors have been designed they could be part of the palette of 

a classical user interface builder to enable a designer to assemble 

interface based on these interactors.  

Mappings that glue together the interactors can be re-used as well. 

As interactor-level mappings they can be automatically 

established when the interactor is instantiated as part of an 

application’s interface or even can specify overall interaction 

paradigms that implement a certain way of interacting with the 

application. 

5.2 Programming Framework Characteristics 
In a recent publication Dumas et. all. presented a survey of 

principles, models, and frameworks to create multimodal 

interfaces [6]. They classified existing frameworks based on their 

architecture trails, their ease of reusability and four further 

characteristics: extensibility, pluggability, reusable components, 

and availability as open source. 

From the eight available frameworks to create multimodal 

interfaces, they state that only three have been made available as 

open source for others to proof and extend the authors work. 

During our initial investigations we figured out that the ICARE-

Toolkit, differently than mentioned by the study, has not been 

made available by the authors. From the remaining two 

frameworks, only one is still being actively developed (Open 

Interface [10]), whereas the development of the other one (Papier-

Mache) has stopped 7 years ago (according to the changes tracked 

in their open source repository). 

Classifying our approach by the suggested criteria, the MINT 

platform is based on finite-state machine processing and still 

misses enhanced fusion mechanisms like frame support or 

symbolical-statistical fusion. It offers a low-level API in ruby, but 

supports higher-level programming features such as a graphical 

state-chart design based on the scxmlgui tool and a visual 

mapping editor to specify the mappings. We have not focus on 

supporting visual programming so far. 

5.3 Processing Performance 
Our main concern was the performance loss by processing all user 

action on the server-side that is required to fuse and distribute 

information from various connected devices. The most 

performance critical part of interface is the tracking and 

processing of user movements. For graphical interfaces this is the 

mouse pointer. To get an idea about the delay that is caused by the 

communication overhead, we tracked on the client side how long 

it takes to capture, send and receive back mouse pointer 

movements. The results are listed in table 1 for three different 

devices: (1) Our webserver running on a Intel Core2Duo P8600 

notebook using a local browser, a first generation 1 Pad and an 

Intel Dual Core T2400 Notebook that are connected via WLAN to 

the server.  

The results revealed that server-sided processing is a feasible 

approach when running the server on a router in a local network. 

For most applications the cursor tracking does not need to be 

pixel-precise (different to the pixel precise evaluation test, in our 

applications even a five pixel movement threshold was not 

discovered by the users) the delay can be further reduced. 

The performance analysis experiment has been performed 500 

times based by an automated test, while presenting an interface 

with 24 parallel running interface interactors, which we consider 

as medium complexity (like an email client main view for 

instance). Currently we have only implemented a very small set of 

interactors, but we intend to evaluate more complex interfaces like 

the Microsoft Word 2010 main interface view as future work.  

6. CONCLUSION 
This paper presents the MINT 2012 framework, a run-time 

platform enabling developers to create multi-modal interactors for 

the web. Research about model-based user interface design has 

been previously done to generate interfaces for different 

platforms. MBUID applies a structured process based on abstract-

to-code transformations through several (transient) models. 

Multimodal interface generation has been considered by MBUI to 

a very limited extend only. Recent surveys revealed that only a 

handful of frameworks have been proposed. From those only two 

were made available for others to use and extend as open source 

and only one is still being actively developed.  

We proposed a new approach based on a model-based design of 

interactors to represent multimodal interface elements. Interactors 

are well-known for user interface development and are considered 

as mature. We decided to use state charts and SCXML, an 

upcoming W3C standard, to specify the interactors. Different to 

other approaches all models are kept alive and get synchronized at 

run-time by mappings. This enables interactor inspection and 

introducing changes like switching modalities or adding new 

Table 1. Processing performance of pointer movement (n=250) 

Device Mean Time Deviation Variance 

Server 9,39 ms 0,72 ms 0,57e-6  

iPad Gen. 1 

WLAN 
14,39 ms 1,9 ms 3,6e-6 

NoteBook 

WLAN 
10,21 ms 1,1 ms 1,2e-6  
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devices at run-time and closes the often occurring gap between 

what has been designed and what has been implemented. 

Interactors run and communicate on the server side and all client-

sided devices and modalities are synchronized with the server. 

We have focused on a performance evaluation, because we think 

that it is one basic requirement for user acceptance (how fast a 

framework is able to process user inputs) and we haven’t found 

performance analyses for other multimodal frameworks that we 

could proof. The current state of the framework is, that is enables 

the model-based creation of multimodal interfaces. To proof the 

efficiency and effectively of the development process we require 

development tools that we are currently working on. 
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