
Engineering Device-spanning, Multimodal Web

Applications using a Model-based Design Approach
Sebastian Feuerstack

Universidade Federal de São Carlos
Rodovia Washington Luís, km 235

São Carlos - São Paulo – Brasil
sfeu@dc.ufscar.br

Ednaldo Brigante Pizzolato
Universidade Federal de São Carlos
Rodovia Washington Luís, km 235

São Carlos - São Paulo – Brasil

ednaldo@dc.ufscar.br

ABSTRACT

Nowadays the web is an ubiquitously available source of

information that can be accessed through a broad range of

devices, such as smart phones, tablets and notebooks. Although

web applications can be used through several devices, they are

controlled and designed for a one-to-one connection type of

interaction, which prevents device-spanning multi-modal

interactions.

We propose a model-based run-time framework to design and

execute multi-modal interfaces for the web. Different to a model-

based design that implements reification, a process to derive

concrete models from abstract ones by transformation, we design

interactors that keep all design models alive at run-time.

Interactors are based on finite state machines that can be inspected

and manipulated at run-time and are synchronized over different

devices and modalities using mappings. We show the

expressiveness of state charts for modeling interactions,

interaction resources, and interaction paradigms.

We proof our approach by checking its conformance against

common requirements for multimodal frameworks, classify it

based on characteristics identified by others, and present initial

results of a performance analysis.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces - Input devices and strategies, Interaction styles,

Prototyping; D.2.2 [Software Engineering]: Design Tools and

Techniques – User Interfaces.

General Terms

Design, Human Factors, Languages.

Keywords

Model-based User Interfaces, Multimodal Interfaces, Web

Application Development, HCI.

1. INTRODUCTION
With the ubiquitously available word wide web information can

be accessed from any place and any device connected to the

internet. Just a web browser is required to search the web or even

run web applications in the cloud.

Different to graphical interfaces of web applications that are often

adapted to consider different screen sizes, the support for different

control modes is often limited to the classic keyboard and mouse

based input control. Input controls that go beyond basic touch

gestures are not considered or are implemented for specific

domains like an in-car control that uses wheels, a touchscreen or

voice commands. Multimodal applications that combine several

modes into one single application are even more complex to

implement. Model-based software development has been

successfully performed to support the semi-automated generation

of interfaces for different platforms (like HTML [9],

XHTML+Voice [9] or even 3D interfaces [9]). But to our

knowledge there are still no frameworks available that support the

model-based design and execution of multimodal interfaces that

can enable a flexible combination of modes and media based on

the preferences of the user.

We implement web applications that enable the user to switch

devices and modalities or even combine them on demand. The

basic idea is to offer a model-based design of custom interactors

that are self-executable and that can be distributed and

synchronized through several devices and modalities. Different to

model-based user interface design (MBUID) that generates

isolated interfaces for different platforms by a structured abstract-

to-concrete modeling of interaction, we design interactors that are,

once they have been designed, assembled by user interface

builders to form a multi-modal interface. Therefore, we adapt

classical user interface building instead of requiring the developer

to learn new languages and processes to create interfaces.

The paper is structured as follows: The next section discusses

related work. Thereafter, in section 3 we present our modeling

approach that re-uses common MBUID models, such as task,

abstract and concrete user interface models for the interactor

design. Section 4 explains how the interactors get instantiated at

run-time and are executed as part of a web server. Section 5

presents an evaluation of the platform based on practitioners’

requirements (5.1), common characteristics for multimodal

frameworks (5.2) that have been identified by others and states

initial results of a performance evaluation (5.2).

2. RELATED WORK
MBUID has been applied for a long time to reduce the

development costs of user interfaces to enable them running on

different platforms. Languages, such as USIXML [14] and tools

NOTICE: This is the author's version of a work accepted for publication by

WebMedia 2012 for your personal use. Not for redistribution. Changes resulting

from the publishing process, including peer review, editing, corrections, structural

formatting and other quality control mechanisms, may not be reflected in this

document. Changes may have been made to this work since it was submitted for

publication. A definitive version will be published by ACM.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

such as [12] have been proposed to form a structured

development process. These processes typical start from a very

abstract description of the user interface tasks to a more concrete

one considering the characteristics of certain modalities (a

concrete user interface model) and end up with a final user

interface to be executed on a specific platform [3]. This process

through several abstractions requires anticipation skills to

understand how changes on an abstract level will be reflected in

the final user interfaces [14]. Most of the approaches that we are

aware of are focusing on design-time support.

Different to these approaches our interactor-based interfaces can

be flexibly extended to new modes and media just by adding new

interactors and mappings to a running system. Our approach is

inspired by the findings of the iCARE platform [13] that supports

building multimodal interaction out of components that are

connected based on the CARE properties. These properties

describe the relations between different modes, such as their

complementary, redundant or equivalent combination.

Some frameworks have been already proposed to ease the creation

of multimodal interaction controls like the Open Interface

Framework [10] that enables a developer to assemble multimodal

controls out of components. It focuses on bridging different

interaction technologies by enabling the interconnection of device

drivers and signal processing algorithms to form new kinds of

multimodal interaction setups. But the specification of how an

application is controlled with an assembled interaction setup is

still done at the source code level.

We are using the same model abstractions as initially summed up

by the CAMELEON framework [3], but applying a development

process that conforms to classical user interface construction:

Using an user interface builder that offers a palette of widgets

(that we call interactors) that can be directly assembled to form a

multimodal interface. This is an approach that has been followed

by Gummy [11] as well, but was focused to create different

graphical interface for different sized screens and has to our

knowledge no support for extending the existing widget set. User

interface builders ease the development of interfaces by offering

pre-defined widgets but lack the possibility to add new ones or

require the developer to enhance the tool itself on the source code

level. Our approach tackles this issue. Therefore, we propose to

construct interactors based on State Chart XML (SCXML).

SCXML1 is a general-purpose event-based state machine

language that is based on Call Control eXtensible Markup

Language and Harel State Tables [7]. It is an easily

understandable language composed of only few basic concepts

(such as states, actions, transitions and events).

Direct model execution has the advantage that even at run-time

the models can be the targets of manipulation to consider context

changes that could not be predicted at design-time. The

unpredictable context-of-use has been named the effective

context-of-use [1] as opposed to the predictive context-of-use that

can be considered at design-time. We call MBUID approaches

that enable direct model execution Model-driven Run-time-

Environments (MRE). The Context Mobile Widget (COMET)

architecture style [4] is an early MRE approach that offers self-

descriptive interactors that are able to handle a set of different

contexts-of-use. At run-time the COMET interactors benefit from

[1]
1
 http://www.w3.org/tr/2011/wd-scxml-20110426/, last checked

august 25, 2011.

querying a semantic network to figure out a transformation path

for an adaptation goal. The Multi Access Service Platform

(MASP) [2] advances model execution one step further and

provides all the logic that defines the behavior of an interface

inside the models. Therefore, several meta-models (and a meta-

meta-model) are provided that describe the construction of

MBUID. Like COMETS, MASP has limited support for

considering multimodal interfaces by supporting just equivalent

multimodal relations.

3. MINT RUN-TIME MODELS
Figure 1 illustrates the six different types of models that we use to

specify a multimodal interface. A task model identifies the tasks

that are relevant for the application. An abstract model captures

the basic behavior of the interface independent of the mode or

media being used. Concrete user interface models complement the

abstract model by considering platform specific behavior and

data. Interaction resource models describe the characteristics and

features of physical (e.g. a mouse, or a smart phone) or virtual

devices (e.g. gesture recognition). A final interface model stores

interface widget templates (source code fragments) for a specific

platform. Finally, a mapping model specifies the way model

elements are connected to each other. Mappings link at least

interactors of two different models, whereas a source code

fragment is directly connected to a corresponding concrete model

interactor. If a mapping connects an interaction resource model

interactor, we call the mapping “multimodal”. Otherwise we refer

to the mapping as a “synchronization mapping”, as it is used to

synchronized interactors between different levels of abstraction.

We call the basic model element an interactor and define it based

on the YORK interactor [5] as

“an executable component in the description of an interactive

system that encapsulates a state, the events that manipulate the

state and the means by which the state is made perceivable to the

user of the system.”

Different to the original definition of the YORK interactor we

explicitly require an interactor to be executable. This has the

advantage that there is no gap between what is designed and

executed and has the result that we instantiate interactors on all

model abstraction levels at run-time. Thus, one abstract interactor

that represents a choice between several options is instantiated

together with its related concrete interactors, for instance a

Interaction Resources

Multimodal Mappings

CUI

Interaction Resources

Abstract Interactor

Model
A

B

C

A

C

A
B

C
C1 C2

P

C2

C1 C2

P

Task-Model

A
B

CT2 T3

T1

>>

Mappings

C

0..*

0..*

0..*

Reification Abstraction

Concrete Interactor

Models
A

B

C
C1 C2

P

0..*

CUI
A

“Templating”

Source Code

Fragments

1..+

Figure 1. The run-time models of a multimodal application.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

graphical pull-down menu or a speech prompt with several

corresponding answers to choose from.

We specify interactors by state charts. On the one hand this

reduces the entry barrier for developers since no new language has

to be learned. On the other hand state charts can be directly

transformed to state machines that can then be executed.

In the following subsections we describe the most interesting

models in greater detail. A task model and templating mechanisms

have been discussed earlier [12][1] and are out of the scope for

this work.

3.1 Abstract Interactor Model (AIM)
The abstract interactor model describes the general behavior of all

user interface elements that can be used in an interface

independently from the control mode or the media being used for

presenting the element to the user. Figure 2 depicts the entire

interactor class hierarchy of the abstract interactor model. The

basic abstract interactor object (AIO) that all other abstract

interactors are derived from includes the basic functionality of the

core interactor class: a unique name, an observable state, the

functionality to instantiate itself as a state machine and to process

events. Further on, an AIO interactor implements a basic interface

navigation enabling the user to navigate between previous/next

and parent/child (through the AIContainer) interactors. An AIO

interactor usually is presented in an interface within a certain

context (AIContext) that clarifies to the user the relevance of the

interactor (e.g. by a textual description, or an interactive help).

Additionally, an interactor has one or several related navigation

shortcuts (AIReference) like a hotkey or a label that can be used

to directly navigate to the interactor.

The two most important classifications of the AIM are the

distinction between input and output as well as continuous and

discrete types of interaction. The former ones are organizational

structures if they are related to output, for instance: lists

(AISingleChoice), containments (AIContainer) and commands, or

choices like individual list elements if they are input-related.

Different to a discrete interactor that defines an identifiable and

referable setting, a continuous interactor can only be controlled

and observed relatively to its previous settings. Examples are a

dimmer to control the light level or a progress bar of a graphical

interface.

Figure 3 illustrates the behavior of the AICommand interactor by

a state chart. This interactor is used to enable a user initiating

single actions. It’s general lifecycle has been derived from the

abstract AIO interactor that specifies an interactor to be

“initialized” upon startup, “organized” if the navigational

relationships to its neighbors have been computed, “presenting”

while it is part of an active user interface, and finally “suspended”

after it disappeared from the active user interface presentation.

During the time an interactor is in the “presenting” state the

navigation is possible by moving the user focus from one

interactor to the next or previous one. Thus, as soon as an

interactor receives a “next” event while it is “focused”, it figures

out its next neighbor and defocuses itself after sending a “focus”

event to the next interactor.

What makes the AICommand interactor special is its capability to

store an activation state that runs in parallel to the “presenting”

super state. If the interactor is in state “presenting” and in the

focus of the user it can be “activated”. A possible concrete

Interactor

- name, states

AIO
- data

child

0..n

parent
1

next
prev 1

1

Abstract Interactor Model (AIM)

AIMultiChoice

AICommand

AIOUTAIIN

AISingleChoice
AIChoice

Element

AIINContinous

- min,max

AIINDiscrete
AIOUTContinous

- min, max
AIContainer

AIReference

AIContext

- description

context

refers
0..n

1

AISingleChoiceElement AIMultiChoiceElement

AISinglePresence

Figure 2. The interactor relations on the abstract level.

AIOUTContinuous

initialized

defocused

focus

suspended

organize

defocus

organized

present

p

 suspendpresent

suspend

organize

regressing progressing

waiting

[d<data]

halt

[d>data]

moving

presenting
on_entry /d=consume(id)

maxmin

[d<data]

[d==max][d==min]

[d>data]

focused

f
[d<data] move [d>data] move

Figure 4. Behavior of the AIOUT Continuous interactor

H

AICommand initialized

defocused

focus

suspended
organize

defocus

organized

present suspend

organize

presenting

on_entry /inform_parent_presenting

next [exists_next]

/focus_next

suspend

present

prev [exists_prev]

/focus_previous parent

/focus_parent

p

deactivated

activate [in(focused)] deactivate [in(focused)]

activated

focused

activation

Figure 3. Behavior of the abstract AICommand interactor.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

interactor that matches this abstract one is a button that we will

present later on.

An example of a continuous interactor is shown by figure 4. It

implements the same overall lifecycle as the AICommand

interactor and represents an output-oriented interactor. Therefore,

the interactor listens to data from a streaming source while it is

being presented, which we specify by an “on_entry” statement.

Depending on the data “d” that it retrieves, the interactor changes

its state to be in “regressing” or “progressing”. Upon initialization

a minimum, maximum as well as a threshold can be defined.

3.2 Concrete Interactor Model (CIM)
The concrete model is in charge of representing an interface on a

specific mode and media. Each platform has its own concrete

model with two constraints:

1. It can only enhance the data structure and behavior of

abstract interactors. Thus, no overlapping definitions

between AIM and CIM are allowed.

2. It is required to specify at least one concrete interactor for

each AIM interactor. Thus, the AIM is the least common

denominator for all mode and media and it is therefore

ensured that for an AIM based interface design there is

always a complete reification to a CIM one.

Figure 5 illustrates an excerpt of a graphical CIM with the

relations to the AIM interactors. Graphical interfaces organize

elements in a coordinate system. This is reflected by the Concrete

Interactor Object (CIO) that adds the data structure to store

positions and sizes. Its lifecycle structure is similar to the AIO,

which eases a direct synchronization, but the state semantic is

different: It starts by being “initialized”, then enters the

“positioning” phase during which it is decided e.g. by the task

model, what other interactors are presented simultaneously. After

the coordinates for each interactor have been calculated based on

the layout and screen constraints, it enters “positioned” and

“displayed” as soon it is presented to the user. Thereafter it can be

“disabled” or “hidden” from the interface.

A coordinate system enables directed navigation options by ”up”,

“down”, “left”, and “right” events. But usually only little

additional behavior needs to be added by the CIM model, since

most of the overall behavior is already specified by the AIM.

Examples for CIO interactors are a gauge meter that implements a

continuous output or a button that represents a command

(depicted by figure 6).

3.3 Interaction Resource Model (IRM)
Interactor resource interactors specify characteristics of physical

or virtual devices that are used to interact with a system. Physical

devices are for instance a mouse, a joystick, or a keyboard. Virtual

devices describe software that controls hardware like a gesture or

body movement recognition driven by a webcam or a light or a

speaker connected to a home automation system.

Figure 7 shows a part of the IRM and depicts the relations

between some of the interaction resources (IRs) that we have and

will present in this section. Like for the other models, IRs are

modeled as interactors. The IRM distinguishes between mode and

media IRs. The former represent multimodal control options of

the user, the latter specify output-only media.

Figure 8 depicts an aggregated IR representing a mouse. It is

composed of a pointer, a button and a wheel. Different to physical

devices like the mouse for which the IR specification is fixed and

often simple, virtual device IRs are more complex and often are

designed with a specific application in mind. Figure 9 depicts an

example of a virtual IR that enables basic user interface

navigation and selection of elements using the four different hand

postures and movements shown on the left of figure 9. Green

colored gloves and a webcam are used to capture the different

Button

initialized

displayed

hidden

position

highlighted

positioning

positioned

calculated

display

hide

displaying

highlight
unhighlight

up||down||left||right

/cio=find(up||down||left||right);

cio.highlight

position

disabled

disable
hide

released

pressed

press
release

Figure 6. A graphical button interactor

IRMode
Interaction

Resource

Interactor

IRMedia

Button Body Screen

Interaction Resource Model (IRM)

Pointer

Hand Eye Head

Wheel

Mouse Keyboard

Speaker

1 1 2 126

Gesture Posture

Figure 7. Part of the Interaction Resource Model

AIO

CIO

leftright

updown

- x,y,width,height,layer

CIM:Graphical

AICommand

Button

AIOUTContinuous

Gauge

Interactor

Figure 5. Excerpt from a graphical CIM

Pointer

stopped

move stop

moving

Button

released

press release

pressed

WheelMouse

up

down

stopped

rotate_up

rotate_down
rotate_up

rotate_down
stop

rotating

on_entry/

publish(value)

Figure 8. Mouse Interactor

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

postures and their movements in relation to the cam (“closer” and

“farther”). By the state chart-based design specification design

decisions can be captured in great detail: First of all, the

navigation works with only one hand. Next, there is a fixed

default speed of one second per element specified. Therefore,

while the previous or next posture is shown, the focus in the

interface moves to the previous or next element with each “tick”.

Then, there is a way to dynamically manipulate the navigation

speed (see “movement” super state of figure 8), which replaces

the default fixed ticker by considering hand movements (closer to

or farther from the cam) to generate “tick” events. Finally, there is

an element selection specified, that on the one hand stops the

navigation as soon as the select posture is shown and on the other

hand requires a second posture to actually confirm the selection

(e.g. for security reasons).

Now that the three interface models have been presented they

need to be linked together to actually form a dynamic multimodal

interaction. Whereas abstract and concrete interactors are

synchronized by mappings that are currently defined inside the

state charts, the relations between different IRs and the abstract or

concrete model are specified by multimodal mappings that we

present in the following sub-section.

3.4 Mappings
We use mappings to connect the various models at system run-

time and distinguish between two elementary types of mappings:

multimodal mappings and synchronization mappings. The former

ones a target of a typical application design process, as they are

used to describe how an interaction resource (mode) is used to

control an interaction. The latter one are used to synchronize the

different levels of interactor abstraction and are pre-defined

together with most of the interactors.

3.4.1 Multimodal Mappings
Multimodal mappings connect abstract or concrete interactors

with interaction resources. They are defined on three different

levels of abstraction using a custom, flow-like notation:

· Application level: A mapping that connects specific

interactor instances; e.g. “If the ‘confirm reservation’ button

is pressed then close the window.”

· Interactor level: A mapping that is pre-defined together with

the interactor designs (“the meta level”) to be used later on

for concrete application development. E.g. “If a button is

pressed then play a ‘click’ sound”.

· Paradigm level: A mapping that specifies an interaction

paradigm, such as e.g. a “drag-and-drop” or a “double-click”

that was prepared to work with the designed interactor set.

Figure 10 gives an example for a multimodal mapping that is

defined at the interactor level between an IR (a pointer) and

interface interactors on the concrete, graphical user interface

level: It defines to change the highlighted graphical UI elements

based on the current pointing position. It is worth mentioning that

some IRs, like the pointer, can only be connected to the CUI

model level and not to the abstract one. This is because the

pointer is moved in a coordinate system and therefore depends on

a graphical interface.

Mappings are specified by a custom flow chart like notation that

offers three basic elements: observations, actions and operators.

Boxes with rounded edges describe “observations” of state

changes. Boxes with sharp edges are used to define actions, which

are backend function calls or the triggering of events. The

mapping observes the state of the pointer interactor and gets

triggered as soon as the pointer enters the state “stopped”. There

are several operators available that we derived based on the

findings of the CARE properties that are used to describe

multimodal relations. The sequence operator “S” that is used in

figure 10 defines a strict top-down sequence of observations and

actions. Thus, the mapping of figure 10 waits for the mouse

pointer to stop, then looks up the concrete interactor that is at the

current mouse pointer positions and finally checks if this

interactor is not already in highlighted and therefore in state

“displayed” (compare with the CIO interactor of figure 6).

NavigationGestures NoHands

one_hand

wait_one

select

OneHand

no_hands

selected

confirmed

confirm

select

Navigation

Command

 Movement

closer/tick

closer

closer/tick

farer

farther/tick

closer/tick

farther/tick

farer/tickto_clock

previous

next

previous
next

next

Predecessor

previous

Successor

tick

tick

start_p
tick

start_n
tick

Speed started
entry/start_ticker

exit/stop_ticker

[1s]/tick

tick

entry/start_timeout

exit/stop_timeout

previous next

confirm

select

Figure 9. Used postures (left) and a gesture-based user interface navigation IR

p = mouse:Interactor.Pointer.Mouse.stopped

cio=CUIControl:find_cio_from_coordinates(p.x,p.y) S cio.highlight

cio:Interactor.CIO.displayed

Figure 10. Basic pointer mapping.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

Mappings can fail and are then reinitialized automatically. Thus,

the pointer mapping of figure 10 can fail for instance if no CIO

can be found at the coordinates where the mouse pointer has been

“stopped”.

Figure 11 gives an example for an application level mapping that

has been designed for a specific application in that a slider and a

progress bar should be connected so that the slider movements are

reflected by the progress bar. Even though the example mapping

can be thought to be used for a concrete a slider and a progress

bar the mapping itself is defined on the abstract, platform

independent level by connecting an AIINContinuous with an

AIOUTContinuous interactor (see figure 4). Thus, a “slider”

could be as well a dimmer control, and the interactor named

“volume” a dimmable light for instance.

The “C” operator that is used in this example defines a

“complementary” relation. Therefore, the mapping initiates its

action only if both observations are true at the same time: the

slider interactor needs to be in state “moving” and the volume

interactor in state “presenting”. The complementary relation is

continuous, which is defined by using lines to connect the

operator “C” without arrows indicating a direction. A continuous

mapping activates the actions as long as all operations are true and

deactivates it otherwise. The mapping of figure 10 forwards all

updates of the slider (stored inside the “data” variable”) to the

“data” variable of the “volume” interactor) as long as the slider is

“moving” and the volume is in “presenting” state.

Finally, figure 12 depicts an example for a paradigm level

mapping that defines a “drag-and-drop” to be used with an

interaction resource that offers a pointer and a button, a mouse for

instance. The pointer is implicitly included by using the mapping

of figure 10 and a synchronization of “highlighting” to the

abstract “focused” state. The Drag-and-Drop mapping utilizes

temporary window (Tw) constraints to define the maximum

timespan in which all observations are required to be evaluated to

true. Further on, a fail statement can be attached to an operator to

list the actions to recover from a failed observation. For the Drag-

and-Drop such a fail statement is used to recover if the button is

released while dragging without a target choice in focus. In this

case the fail statement ensures that all dragged elements are re-

added to the origin choice list.

3.4.2 Synchronization Mappings
Synchronization mappings are defined to propagate information

about state changes between the different abstraction levels of one

interactor. Mainly between it’s abstract and it’s several concrete

model representations. Figure 13 depicts such a mapping that is

specified in the same notation as a multimodal mapping. It

ensures that a “highlighted” interactor of the concrete model (that

has been highlighted e.g. by the mouse pointer (see pointer

mapping, figure 10) is assumed to be in the user’s focus in its

abstract model representation.

In an earlier approach, we used “on_entry” and “on_exit” state

actions to synchronize AIM with CIM interactors and did not use

separate mappings for model synchronization. This had the

advantage that all synchronizations get automatically added if an

interactor is used.

The disadvantage was an un-wanted dependency of the AIM to

the CIM models, which prevented introducing new concrete

model without touching the existing AIM model.

In this section we gave an overview about the models we are

using to design and combine multimodal interactors by an

abstract, a concrete and a mapping model. Physical or virtual

devices are specified by an interaction resource model. The next

section introduces the MINT platform, which implements a run-

time environment for the models and enables to directly execute

them, without a transformation to source code.

4. MINT PLATFORM 2012
Model-driven design of software is performed by designing

models and transforming them from platform independent to

platform dependent ones. Usually this is a process that is

performed during design-time before the application is started the

first time and that ends with a final model-to-code transformation.

There are two main reasons, which made us decide to implement a

run-time instead of a design-time process: First, different to

software backend development, user interface development is a

highly interactive and iterative process. Improving the efficiency

in including changes in a single iteration would improve the

overall development speed since changes can be discussed while

giving the targeted audience the opportunity to experience the

interface.

Second, modern user interfaces need to consider context changes:

different groups of users, devices, environments, cultures, or

modalities. Often all these potential context-changes cannot be

considered during design-time; therefore problems often first

occur during run-time when it is too late to adjust the interface

using a traditional model-driven development approach.

s = slider:Interactor.AIO.AIIN.AIINContinuous.moving

C s.data -> v.data

v = volume:Interactor.AIO.AIOUT.AIOUTContinuous.presenting

Figure 11. Application level mapping.

C
dst=AIMultiChoice.focused

C

Tw<0,3s

aois.drag
dst.drop(aios)

src=AIMultiChoice.focused

Tw<0,3s
b=Button.pressed

aios=src.children.all(chosen) b.released

src.drop(aios) fail

Figure 12. Drag-and-Drop paradigm level mapping.

cio = Interactor.CIO.highlighted
S

NOT aio = cio.name:Interactor.AIO.focused
aio.focus

Figure 13. Synchronization Mapping.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

Because of that, we implemented a model-based run-time

environment (MRE) that is executed as part of a web-server. The

main tasks of the MRE are 1) to instantiate the interactors of the

Task, AIM, CIM and IRM as state machines, 2) to connect them

through the mappings, and 3) to synchronize the modes and media

utilized in an interaction by the user. The platform implements the

structure of the W3C multimodal framework architecture (W3C-

MMI) [17] and its basic component-based architecture is depicted

in figure 14. Different to the W3C approach we strictly

distinguish between mode and media. Thus, media components

such as a web page are pure output components whereas modes

implement components that handle user inputs. Therefore, even

mouse and keyboard events are synchronized inside the

interaction manager on server side instead of by the browser. The

left part of the figure shows the server side that consists of a No-

SQL data store with publish/subscribe functionality (RedisDB),

an asynchronous HTTP Server written in Javascript (NodeJS) and

an Interaction Manager that manages all the model instances

written in ruby and the Event Machine Framework written in C

that enables event-driven I/O based on the reactor pattern with

high scalability. Since the main processing and fusion of the

different connected modes and media happens on the server-side,

all server-side functionality is processed completely asynchronous

and event-driven.

Two components of figure 14 have not been discussed so far: The

Tasks model in the interaction manager and the final HTML

interface model (FIM-HTML) in the HTTP server. The former

one is an implementation of a task model interpreter that can

process a task tree specified in the ConcurTaskTree notation [12]

and is used to define the overall process of an application. It

distinguishes between three types of tasks: Interaction In,

Interaction Out and Application tasks. Each task type has a

behavior specification lifecycle that has been described earlier by

the WebTaskModel [1]. The latter one, the final interface model

(FIM), represents the graphical CIM model interactors by HTML

templates and a widget library (we use jQuery).

The client side consists of the real interaction resources

implementing modes and media, like a browser, head movement,

posture and gesture recognition, a mouse or a multi-touch surface.

User input from the modes is forwarded to the IRM, gets

processed there and then is stored and published in the Redis

database. The HTTP server subscribes itself to the database to

receive relevant interactor updates and forwards them to the

connected browsers.

5. Evaluation
Earlier works have suggested several requirements that have to be

fulfilled for such a framework to be applicable. We will use these

requirements (5.1) and classification criteria (5.2) to discuss the

pros and cons of our work and proof the feasibility of a server-

sided procession by an inital performance analysis (5.3). Further

on, we indent to publish the 2012 version as open source as we

did with the previous version [7] as well for others to proof and

further evaluate our approach.

5.1 Requirements
As part of the W3C multimodal initiative, [17] has identified

several requirements a multimodal toolkit should consider from a

practitioner perspective that we discuss and relate in the following

to our approach.

5.1.1 Structuration Mechanism
[15] notes that structuration mechanisms are required to “define

the overall user interface composition” and mentions that there is

currently no fixed overall model and no fixed model to start with

as well.

Our approach uses reference integration through mappings that

can be defined separately from the other models to link their

elements together based on state change observations that can

trigger events (actions). A current limitation of our approach is the

synchronization mappings that sync between the different

abstraction levels (e.g. between the abstract concrete model) of a

single interactor. These are currently defined inside the interactor

to reduce the amount of mappings that need to be created when

designing an interface. This problem is known as the mapping

problem [14].

5.1.2 Explicit Control Structures
[15] mentions explicit control structures as a crucial requirement.

They are 1) hardly distinguishable from other facets, 2) difficult to

track, and 3) difficult to locate if there are several threads of

control.

We proposed a three-folded control structure: a macro-level and

an inter-interactor as well as an intra-interactor control on the

micro-level. The macro-level that specifies the overall control

flow, we rely on a task model, where each task consists of a set of

active interactor. On the micro-level finite state machines

implement the control flow (the behavior) of individual

interactors. Between interactors we use mappings to define their

control relations.

5.1.3 Extensible Event Definition Mechanisms
[15] requires a multimodal toolkit to use events to connect

interaction channels from different modalities and demands a

mechanism that “should be extensible so that when a new input or

output channel is created it is not necessary to rewrite the event

model” [15].

Our approach defines an abstract interactor model (AIM) that

specifies the minimal set of interactors that are required to be

considered by a new modality (or a certain combination of modes)

to allow the user a complete control of all interfaces that have

been designed with our approach. Since we rely on SCXML

Ubuntu Linux 12.04

Microsoft Windows

Ubuntu Linux

12.04

Web-Browser

HTTP Server –

NodeJS

Interaction Manager

Media Gfx

HTML-Browser

Mode

Head Detection

Mode

Posture

Recognition

Mode: Mouse

Mode: Touch

Data

Component

RedisDB

Ruby +

EventMachine

MIMAIM

CIM-Gfx

IRM

WebSocket

TCP/IP

SocketStream

HTTP +

WebSocket

Tasks

FIM-HTML

Figure 14. MINT 2012 Basic technical architecture.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

based state charts interactor designs, the basic API is to observe

these state changes or trigger them by events. An extension of the

event definitions usually has to happen at the concrete model

level. Thus, an abstract interactor could be extended to react on

new events that are specific to a certain modality.

5.1.4 Data Modeling
[15] requires an explicit data model.

We distinguish between two types of data models. One that is

used to capture the data from and present the information to the

user and another one that is used by the functional backend of the

applications. The former one is designed using class diagrams to

express the data and additional functionality that is implemented

by each interactor. The latter one depends on the application

domain and could be a database, an enterprise server or web

services for instance.

5.1.5 Reusable Components
User interfaces are made out of components containing visual

parts, interactive behavior and control structures that repeat

themselves in different parts of the interface [15].

In our approach interactors encapsulate these functionalities and

represent interface elements as re-usable components. Interactors

are designed once to specify a concrete way of interaction, like

e.g. by a widget on a specific platform, a general way of

interacting on the abstract model or by capturing the interaction

capabilities of an interaction (as a resource interactor). Once these

interactors have been designed they could be part of the palette of

a classical user interface builder to enable a designer to assemble

interface based on these interactors.

Mappings that glue together the interactors can be re-used as well.

As interactor-level mappings they can be automatically

established when the interactor is instantiated as part of an

application’s interface or even can specify overall interaction

paradigms that implement a certain way of interacting with the

application.

5.2 Programming Framework Characteristics
In a recent publication Dumas et. all. presented a survey of

principles, models, and frameworks to create multimodal

interfaces [6]. They classified existing frameworks based on their

architecture trails, their ease of reusability and four further

characteristics: extensibility, pluggability, reusable components,

and availability as open source.

From the eight available frameworks to create multimodal

interfaces, they state that only three have been made available as

open source for others to proof and extend the authors work.

During our initial investigations we figured out that the ICARE-

Toolkit, differently than mentioned by the study, has not been

made available by the authors. From the remaining two

frameworks, only one is still being actively developed (Open

Interface [10]), whereas the development of the other one (Papier-

Mache) has stopped 7 years ago (according to the changes tracked

in their open source repository).

Classifying our approach by the suggested criteria, the MINT

platform is based on finite-state machine processing and still

misses enhanced fusion mechanisms like frame support or

symbolical-statistical fusion. It offers a low-level API in ruby, but

supports higher-level programming features such as a graphical

state-chart design based on the scxmlgui tool and a visual

mapping editor to specify the mappings. We have not focus on

supporting visual programming so far.

5.3 Processing Performance
Our main concern was the performance loss by processing all user

action on the server-side that is required to fuse and distribute

information from various connected devices. The most

performance critical part of interface is the tracking and

processing of user movements. For graphical interfaces this is the

mouse pointer. To get an idea about the delay that is caused by the

communication overhead, we tracked on the client side how long

it takes to capture, send and receive back mouse pointer

movements. The results are listed in table 1 for three different

devices: (1) Our webserver running on a Intel Core2Duo P8600

notebook using a local browser, a first generation 1 Pad and an

Intel Dual Core T2400 Notebook that are connected via WLAN to

the server.

The results revealed that server-sided processing is a feasible

approach when running the server on a router in a local network.

For most applications the cursor tracking does not need to be

pixel-precise (different to the pixel precise evaluation test, in our

applications even a five pixel movement threshold was not

discovered by the users) the delay can be further reduced.

The performance analysis experiment has been performed 500

times based by an automated test, while presenting an interface

with 24 parallel running interface interactors, which we consider

as medium complexity (like an email client main view for

instance). Currently we have only implemented a very small set of

interactors, but we intend to evaluate more complex interfaces like

the Microsoft Word 2010 main interface view as future work.

6. CONCLUSION
This paper presents the MINT 2012 framework, a run-time

platform enabling developers to create multi-modal interactors for

the web. Research about model-based user interface design has

been previously done to generate interfaces for different

platforms. MBUID applies a structured process based on abstract-

to-code transformations through several (transient) models.

Multimodal interface generation has been considered by MBUI to

a very limited extend only. Recent surveys revealed that only a

handful of frameworks have been proposed. From those only two

were made available for others to use and extend as open source

and only one is still being actively developed.

We proposed a new approach based on a model-based design of

interactors to represent multimodal interface elements. Interactors

are well-known for user interface development and are considered

as mature. We decided to use state charts and SCXML, an

upcoming W3C standard, to specify the interactors. Different to

other approaches all models are kept alive and get synchronized at

run-time by mappings. This enables interactor inspection and

introducing changes like switching modalities or adding new

Table 1. Processing performance of pointer movement (n=250)

Device Mean Time Deviation Variance

Server 9,39 ms 0,72 ms 0,57e-6

iPad Gen. 1

WLAN
14,39 ms 1,9 ms 3,6e-6

NoteBook

WLAN
10,21 ms 1,1 ms 1,2e-6

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

devices at run-time and closes the often occurring gap between

what has been designed and what has been implemented.

Interactors run and communicate on the server side and all client-

sided devices and modalities are synchronized with the server.

We have focused on a performance evaluation, because we think

that it is one basic requirement for user acceptance (how fast a

framework is able to process user inputs) and we haven’t found

performance analyses for other multimodal frameworks that we

could proof. The current state of the framework is, that is enables

the model-based creation of multimodal interfaces. To proof the

efficiency and effectively of the development process we require

development tools that we are currently working on.

7. ACKNOWLEDGMENTS
We would like to thank FAPESP for funding the travel grant that

enabled Sebastian Feuerstack to attend the WebMedia 2012

conference and present the paper. Further on, Sebastian

Feuerstack is grateful to the Deutsche Forschungsgemeinschaft

(DFG) for the financial support of his work.

8. REFERENCES
[1] Bomsdorf, B. (2007), The WebTaskModel approach to web process

modelling, in 'Proceedings of the 6th international conference on
Task models and diagrams for user interface design', Springer-
Verlag, Berlin, Heidelberg, pp. 240--253.

[2] Blumendorf, M. Lehmann, G. et al.: Executable Models for Human-
Computer Interaction; in Interactive Systems. Design, Specification,
and Verification: 15th International Workshop, DSV-IS 2008
Kingston, Canada, July 16-18, 2008; S. 238–251; Berlin,
Heidelberg; 2008; Springer-Verlag.

[3] Calvary, G., Coutaz J., Thevenin D. ,Limbourg, Q., Bouillon L., and
Vanderdonckt J. A unifying reference framework for multi-target
user interfaces. Interacting with Computers, 15(3):289–308, 2003.

[4] Demeure, A., Calvary, G., and Coninx, K.: COMET(s), A Software
Architecture Style and an Interactors Toolkit for Plastic User
Interfaces; S. 225–237; 2008; Design, Specification, and
Verification, 15th International Workshop, DSV-IS 2008, Springer
Berlin / Heidelberg..

[5] Duke, D. Faconti, G., Harrison, M., and Paternó, F. Unifying views
of interactors. In AVI ’94: Proceedings of the Workshop on
Advanced Visual Interfaces, pages 143–152, New York, NY, USA,
1994. ACM, ISBN:0-89791-733-2.

[6] Dumas, B.; Lalanne, D. and Oviatt, S. (2009), 'Multimodal
interfaces: A survey of principles, models and frameworks', Human
Machine Interaction, 3--26.

[7] Feuerstack, S. and Pizzolato, E.B. (2011), Building Multimodal
Interfaces out of Executable, Model-based Interactors and
Mappings, in J.A. Jacko, ed., 'Proceedings of the HCI International
2011; 14th International Conference on Human-Computer
Interaction, Part I', Springer, Heidelberg (2011), Hilton Orlando
Bonnet Creek, Orlando, Florida, USA., pp. pp. 221—228.

[8] Gonzalez-Calleros, J.; Vanderdonckt, J., and Muoz-Arteaga, J.
(2009), A Structured Approach to Support 3D User Interface
Development, in 'ACHI '09. Second International Conferences on
Advances in Computer-Human Interactions, 2009.', pp. 75 -81.

[9] Harel, D. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, 1987.

[10] Lawson,J.-Y.L. , Al-Akkad, A.A., Vanderdonckt, J., and Macq, B.
An open source workbench for prototyping multimodal interactions
based on off-the-shelf heterogeneous components. In EICS ’09:
Proceedings of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems, pages 245–254, New York, NY,
USA, 2009. ACM.

[11] Meskens, J. , Vermeulen, J., Luyten, K., and Coninx, K.. Gummy for
multi-platform user interface designs: shape multiply fix use me. In
Proceedings of the working conference on Advanced visual
interfaces, AVI ’08, pages 233–240, New York, NY, USA, 2008.
ACM.

[12] Mori, G., Paternò, F., and Santoro, C.. Ctte: Support for developing
and analyzing task models for interactive system design. IEEE
Trans. Software Eng., 28(8):797–813, 2002.

[13] Nigay, L., and Coutaz, J.: Multifeature Systems: The CARE
Properties and Their Impact on Software Design; in Intelligence and
Multimodality in Multimedia Interfaces; 1997.

[14] Limbourg Q., and Vanderdonckt, J.(2004), Addressing the mapping
problem in user interface design with UsiXML, in 'TAMODIA '04:
Proceedings of the 3rd annual conference on Task models and
diagrams', ACM Press, New York, NY, USA, pp. 155--163.Jean
Vanderdonckt and Pierre Berquin. Towards a very large model-
based approach for user interface development. In UIDIS, pages 76–
85, 1999.

[15] Sire, S., Chatty, C.: The Markup Way to Multimodal Toolkits. In:
W3C Multimodal Interaction Workshop (2002)

[16] Stanciulescu,A. (2008), 'A Methodology for Developing Multimodal
User Interfaces of Information Systems', PhD thesis, Université
Catholique de Louvain.

[17] W3C. Multimodal architecture and interfaces.
http://www.w3.org/tr/2011/wd-mmi-arch-20110125/, last checked
may 21, 2012, 2012.

NOTICE: This is the author's version of a work accepted for publication at WebMedia 2012. The definitive version will be published by ACM.

