
Designing and Executing Multimodal Interfaces for the

Web based on State Chart XML

Sebastian Feuerstack, Jessica H. Colnago, César R. de Souza, Ednaldo B. Pizzolato
Universidade Federal de São Carlos
Rodovia Washington Luís, km 235

São Carlos - São Paulo – Brasil
jessica_colnago@comp.ufscar.br, {cesar.souza, sfeu, ednaldo}@dc.ufscar.br

ABSTRACT

The design and implementation of multimodal interfaces that

support a variety of modes to enable natural interaction is still

limited. We propose a multimodal interaction web framework that

considers on the one hand the current W3C standardization

activities, such as Start Chart XML and the Model-Based UI

Working Group. But on the other hand it implements recent

research results enabling the direct execution of multimodal

interfaces based on the information of the design models. This

paper presents the basic concepts of modeling and executing

multimodal interfaces for the web and illustrates our approach by

presenting two case studies that have been implemented so far.

Keywords

State Chart XML (SCXML), Multimodal Interfaces,

Specification, W3C.

1. INTRODUCTION
Nowadays the web is ubiquitous available. But the access is

bound to a personal computer, a smart phone or a tablet pc. The

web is controlled by using a mouse, a keyboard or by touching the

display. Further modes of control such as using gestures or voice

still remain restricted to certain applications. Although promising

attempts have been made to bring multimodal interfaces to the

web, such as the XHTML+Voice initiative of the EMMA and

SMIL languages, there are still frameworks missing that support

the design and generation of multimodal interfaces for the web.

In this paper we present the Multimodal Interaction framework

(MINT) that enables the model-based design of multimodal

interface components for the web and offers a web server-sided

platform to execute these models to run a multimodal web

application. Our approach differs in the following two aspects

from earlier work on the model-driven development of user

interfaces (MDDUI) as well as from current approaches to

implement multimodal interfaces for the web:

- We focus on the design of a language, which consists of

several models that are used to design multimodal interactors

and capture specific interaction characteristics of different

control modes. Earlier work on MDDUI has been performed

to describe semi-automated generation processes to generate

entire user interfaces for different platforms whereas we end

up with multimodal interactors that can be assembled to form

an interface. Therefore, the assembly of an interface by

interactor can be performed using the well know user

interface builder paradigm instead of abstract-to-concrete

model refinements.

- Different to approaches like XHTML+Voice that are

executed inside the browser, we synchronize all the modes

on the server side by utilizing real-time web technologies

such as Web Sockets. This enables us to even synchronize a

multimodal application that spans across several devices, as

well as to flexibly add further control modes or media later

on.

In the next section we discuss the related work regarding these

two points. Thereafter, in section 3, we first present the MINT

language model that is based on state charts and enable the design

of multimodal interactors. Then we describe the MINT platform

that enables the execution of the interactors as a component of a

web server to serve multimodal interfaces and a tool that a

developer can use to design the interactors. In section 4 we

present as examples two case studies, a gesture based drag-and-

drop enabling to virtually locate furniture of an online shop into

an augmented reality scenario, and an interactive music sheet that

can be controlled just by head movements. Finally, section 5

states future work.

2. RELATED WORK
Model-driven development of user interfaces (MDDUI) has been

applied for a long time to reduce the development costs of user

interfaces that should run on different platforms. Languages, such

as USIXML [7] and tools such as [11, 9] have been proposed to

form a structured development process. These processes typical

start from a very abstract description of the user interface tasks, to

a more concrete one considering the characteristics of certain

modalities (a concrete user interface model) and end up with a

final user interface to be executed on a specific platform [4].

Although a structured process has the advantage that it represents

an engineering method that can guide a developer from a problem

to the solution, the diversity of design models involved requires a

substantial learning effort. Additionally, this process through

several abstractions requires anticipation skills to understand how

changes on an abstract level will be reflected in the final user

interfaces [13].

We are using the same model abstractions as initially summed up

by the CAMELEON framework [4], but using a development

process that conforms to classical user interface construction:

Using an user interface builder that offers a palette of widgets

(that we call interactors) that can be directly assembled to form a

multimodal interface. This is an approach that has been followed

by Gummy [8] as well, but was focused to create different

graphical interface and has to our knowledge no support for

extending the existing widget set. User interface builders ease the

development of interfaces by offering predefined widgets but lack

the possibility to add new ones or require the developer to

enhance the tool itself on the source code level. Our approach

tackles this issue. Therefore, we propose to construct interactors

based on State Chart XML (SCXML). SCXML [1] is a general-

purpose event-based state machine language that is based on Call

Control eXtensible Markup Language and Harel State Tables [6].

It is an easily understandable language with only basic concepts

(such as states, actions, transitions and events). This enables a

structured design approach to introduce new interactors and to

directly execute these interactors, since SCXML can be directly

transformed to state machines.

The current most applied language to describe multimodal

interfaces for the web is XHTML+Voice [2], which is already

supported by tools like the IBM Websphere Multimodal Toolkit.

Additionally, initial approaches from the MDDUI community to

use the CAMELEON model abstractions to create

XHTML+Voice interfaces have been proposed [12]. There are

two main disadvantages of these efforts: first, they are currently

limited to describe only one multimodal combination (graphical

and voice output media with speech control), second, they

implement fusion of modes inside the browser. Different to

server-sided fusion this limits the distribution of modes and media

to include several devices in one interaction.

Our approach is driven by server-side processing. Therefore we

utilize recent technologies like Web Sockets as well as CSS3

manipulation to synchronize interfaces running inside the web

browser between several devices and for the fusion and fission of

different modes and media. This enables us to connect new modes

such a gesture or head movement recognition to control the web

interface.

3. MINT FRAMEWORK
To tackle the challenge to ease the creation of new multimodal

ways of interacting with the web, we propose the Multimodal

INTeraction Framework (MINT). It is divided into two parts:

First, the language based on designing start-charts to describe the

behavior of interactors and multimodal mapping to specify the

multimodal fusion and fission mechanisms of them. Second, the

runtime environment that runs inside the webserver to

synchronize the modes and media utilized in an interaction by the

user and follows the basic structure of the W3C multimodal

framework architecture [3].

3.1 Language
The recent years a lot of languages for MDDUI have been

proposed and their principle model abstractions have been

summed up in the CAMELEON framework. But most approaches

proposed proprietary languages and focus on the design of multi-

platform interfaces. Multimodal interfaces have been considered

only to a very limited extend so far. Therefore, we decided to use

state charts and class diagrams as the basic design notation, since

they are already widely known. Therefore we only add proprietary

language extensions to describe the multimodal fusion and fission

processes respectively the connections between modes and media.

Each interactor, that could represent one interface element, such

as a button, a list or a menu entry for instance, consists of two

model abstractions: An abstract one that captures its behavior

independent of mode and media – and several concrete ones to

match its representation and the specific capabilities of a certain

platform.

The class diagram of figure 1 shows the inheritance relations

between the different interactors on the abstract level. An abstract

interaction object (AIO) class is the basic abstract class for all

other interactors. An AIO could either represent an input related

(mode) control (AIIN) or an output related media (AIOUT). Both

could represent either a continuously ongoing (such as a progress

bar or a slider) or a discrete, static information or action (such as a

button or a textual output).

The behavior of an interactor is specified by a state chart and

inherited through the interactor’s hierarchy shown in figure 1. In

the following example we describe the behavior of the

AISinglePresence interactor that manages a list of other

interactors (it is derived from an abstract interaction container –

AIC) and ensures that only one of its element is presented at a

certain time). Additionally this interactor is output related and

discrete and therefore only presents information to the user (where

each of its information could be well distinguished). An example

would be for instance a traffic light widget that either presents a

green, yellow, or red light to the user. Different to common

interactors like a single choice list (AISingeChoice) or a

command (AICommand - which might be a button for instance),

the AISingePresence interactor has been specifically designed for

an application that implements a new form of interaction (which

we present later on) and therefore represents the basic idea of our

approach to ease the design of new interactors based on models

instead of code.

Figure 2 shows the state chart of this interactor. It implements the

general life cycle of every abstract interactor that starts in the state

initialized, gets organized when it knows about its neighbors (to

support navigation between interactors), then presented to the user

and finally suspended. What makes the behavior of this interactor

specific is that it initially presents just his first child (presenting,

on_entry) and enables to change the actual presented child by

switching to the next or previous child respectively, but only if the

interactor is currently “focused” by the user as well as “entered”.

Interactor

AIO

AIC

child
0..n

parent
1

nextprev 1

1

Structure:AUI

AIMultiChoice

AICommand

AIOUT
AIIN

AISingleChoice

AIChoice

Element

AIINContinous AIINDiscrete
AIOUTContinousAIOUTDiscrete

AIReference

AIContext

context

label
0..n

1

AISingleChoiceElement AIMultiChoiceElement

AIChoice AIRealityFrame AISinglePresence

Fig.1. The interactor relations on the abstract level.

The specification of an interactor might look initially complex but

it captures the entire behavior so that is can be stored in SCXML

and directly executed (see section 3.2), which substitutes writing

source code. Further on, the design of interactors is only required

when new forms of interactor are designed, whereas a user

interface designer can just instantiate these interactors and arrange

them using a classical user interface builder tool (which is out of

scope for this paper).

For the user to control an interactor, devices such as a keyboard or

a mouse are required. They are designed by using state charts in

the same way as the interactor above. Since we are interested in

modeling new forms of interactions, figure 3 presents a basic

interactor that observes head movements for controlling an

interface.

As soon as the user’s head is detected, it distinguishes the head

from being centered, left or right tilted. It is stored in SCXML and

executed like the AISinglePresence interactor, but is instantiated

only once to represent the API of the device that captures the head

movements and throws the corresponding events to trigger a state

change based on the head movements of the user.

Finally, both the device interactor and the AISinglePresence

interactor are connected by multimodal mappings. Figure 4 shows

such a mapping that connects both interactors. Mappings consist

of boxes with sharp and soft edges. The former ones are used to

define function calls (e.g. right_tilt_cmd) or events (e.g.

dest.next), the latter ones to define reactions on state changes of

an interactor (e.g. Head.centered). In our case the mapping gets

triggered as soon as the Head interactor enters the right_tilted

state. The “S” operator specifies a sequential mapping ensuring

that the commands will occur in the specified order and the Tw

condition defines a temporal window in which the operator has to

succeed. This means that after the head is found in the right_tilted

position it must be centered during an interval of 300ms and

800ms for the mapping to continue, otherwise the mapping fails

and is restarted. Immediately following the head gestured the

focused object is selected (the AISinglePresence interactor in our

use case) and it receives the next event.

3.2 Platform
The platform complements the framework by implementing the

run-time part enabling the execution of the interactors that have

been designed as state charts and instantiated to represent widgets

of an application’s user interface. Following the idea and the

definitions of the W3C Multimodal Architecture and Interfaces

working draft (W3C-MMI) [3], the platform runs on the server

side as part of the web-server and implements an interaction

manager that is connected to several modality components.

Figure 5 illustrates our approach in relation to the W3C MMI

specification. Our overall architecture is identical to the one

proposed by W3C MMI. We implemented the optional Data

Component as a tuple space and the interaction manager as a three

layered architecture. Different to the W3C approach we strictly

distinguish between mode and media. Thus media components,

such as a web page are pure output components whereas modes

implement components that handle user inputs. Therefore, even

mouse and keyboard events are synchronized inside the

interaction manager instead of the browser. The instantiated

interactors and multimodal mappings are managed by a set of

reactive software agents inside the interaction manager. Each state

AISinglePresence

initialized

defocused

on_entry /sync_cio_to_displayed

focus

suspended

on_entry /sync_cio_to_hidden

organize

defocus

organized

present

presenting

on_entry /present_first_child

on_exit /hide_chilren

enter
leave

entered
next [exists_next_child]
/present_next_child

focused

waiting

on_entry /sync_cio_to_displayed

 suspend
present

prev [exists_next_child]
/present_previous_child

next [exists_next]

/focus_next

prev [exists_prev]

/focus_previous
 parent

/focus_parent

suspend

organize

Fig.2. Behavior specification of the AISinglePresence interactor.

Web Server

Interaction Manager

Modality

Component

Web Browser

Data

Component :

Tuple Space

(Rinda)

Modality

Component

Head

Detection

Modality

Component

Posture

Recognition

Transport Mechanism 2:

TCPIP

 TCP/IP
Object-Relational

Mapper

(Datamapper)

MINT-Rails

Component

MINT-Core

Agents

Transport Mechanism 1

Web Sockets

Modality

Component

Mouse

Keyboard

Fig.5. Basic Mapping to combine interactors.

Head Captured

IR:Head

left_tilted

NoHead

right_tilted

left

center

centered
right

center

discover

lost

Fig.3. Interactor that describes the head movements.

Head.right_tilted
S

Head.centered

0,3<Tw<0,8s

dest=AIO.focused S dest.next

Tw=0

right_tilt_cmd

Fig.4. Basic Mapping to combine interactors.

change of an interactor is written in the tuple space. The

multimodal mappings subscribe for relevant state changes with

the tuple space and send events to the interactors to initiate a state

change. The agents are written in ruby and contain the functional

core of an interactor that can be called with an action defined by a

transition or an on_entry or on_exit events such as shown in the

interactor of figure 2. Since the software agents communicate only

with the tuple space and run in separate threads they can be

distributed to tackle performance bottle-necks for cpu intensive

calculations, such as a constraint solver for instance that we are

using to calculate the user interface layout [5].

3.3 Tool
Even though the interactor design is not a regular task required for

designing a multimodal application, the design of new interactors

can get complex – especially for interactors that implement

parallel running and history states. One tools that supports the

state chart modeling with SCXML is the scxmlgui tool [10]

shown in figure 6. It additionally supports animation of state

changes so that state changes of individual interactors could be

easily observed.

4. CASE STUDIES
We have applied our approach to model and execute multimodal

interactions in several prototypes and experimented with

designing interactors for different medias, such as web interfaces,

sound, and augmented reality and modes, like a hand gesture and

posture recognition, the Wii controller or by detecting head

movements to control an interface so to prove the feasibility of

our approach.

4.1 Interactive Music Sheet
During plays, music sheets are used as a guide to perform a

musical piece. However, since songs may span across several

pages, an extra amount of coordination is necessary to turn pages

without disrupting the play. Therefore musicians are required to

learn the music by hearth.

For most instruments, moving a page involves leaving the

instrument’s playing area, which can be a long and cumbersome

task if one is not sufficiently used to this action. Some existing

solutions for this problem include the use of custom peripheral

devices in order to turn pages with the feet. However, these

solutions require additional hardware and, due to the extra

hardware costs, are targeted to professional musicians.

The basic interactor that implements the music sheet is the

AISinglePresence interactor of figure 2. It represents the entire

sheet that is divided into several pages between that the user can

navigate forward or backward.

While we tested this prototype, we realized that head movements

are a suitable way to control the page turns, because as long as the

musician has not memorized the music he is required to follow the

notes and, therefore, his head remains quite stable while reading.

The head tracking needs to be started explicitly after the musician

has seated to prevent unintended page turns in a noise

environment. Figure 8 illustrates a mapping that waits for a button

click on the music sheet to start the control by head movements. It

uses the complementary operator, C, to define that a sequence of a

button pressed and released has to happen in series (because of

the sequence operator, S) and in a defined temporal window (Tw)

to fire the enter event. This results in the AISinglePresence

interactor to react on the head movement events.

4.2 Augmented Drag-and-Drop
For another use case we implemented a prototype of a web

furniture shop that supports arranging furniture in an augmented

reality environment. For this use case we were interested in

figuring out how common interaction paradigms, for instance a

drag-and-drop can be modeled with our approach for different

modes and media. To arrange the furniture the user had to access

a web site that enables to browse and choose between different

furniture items and store them in a shopping cart (like depicted in

figure 9). Then, the user can drag items out of the shopping cart

and, while they are crossing the dashed border of the shopping

cart, the web site switches to displaying an augmented scene that

Fig. 6. Interactor design using scxmlgui

LeftButton.released

a=AISinglePresence.focused

C
LeftButton.pressed

S

a.enter

Tw<0,3s

Fig.8. Mapping to start a control by head movements.

Fig.7. An excerpt of the head movement detection modality

component (left) and a web browser displaying the music

sheets (right)

is captured by a cam behind the user and films the surrounding

environment of the user. Additionally the dragged item switches

from 2D into a 3D representation and can be virtually positioned

to see if it fits well in the environment, as shown in the right part

of figure 9.

Different to the previous use case the principle interactor is a list

(AISingleChoice) with contains elements

(AISingleChoiceElement) that can be dragged and dropped.

Figure 10 shows the drag-and-drop mapping to be used with a

posture recognition modality component. It is initiated as soon as

the user shows a (button) “pressed” posture while pointing to a

list element (that is in “focus” while the user is pointing to it). If

this is the case the focused list element receives a drag event

(which enables it to be dragged around) and the mapping waits for

the left hand showing a (button) “released” posture to drop the

element to the destination that the user is pointing to while

showing the “released” posture.

5. FUTURE WORK
We presented a framework to design and execute multimodal

interfaces for the web that conforms to and implements actual

W3C standards like SCXML and Web Sockets for instance.

Furthermore it follows the basic W3C MMI architecture, has been

implemented on the server side and has been made publically

available for others to proof and enhance our work.

For the future we intend to offer a tool that supports the developer

designing multimodal mappings, which currently still needs to be

programmed in ruby (different to the state chart design that is

already tool supported). Furthermore the current implementation

of the platform is already structured as proposed in the W3C MMI

specification but currently uses a proprietary TCP/IP

communication instead of the proposed message protocol.

Therefore we will investigate in how to implement a standardized

communication between the interaction manager and the modality

components while preserving the communication speed of our

current implementation.

6. REFERENCES
[1] State chart xml (scxml): State machine notation for control

abstraction, w3c working draft 26 april 2011,

http://www.w3.org/tr/2011/wd-scxml-20110426/, last

checked august 25, 2011.

[2] Xhtml+voice profile 1.0, W3C,

http://www.w3.org/tr/2001/note-xhtml+voice-20011221, last

checked august 25, 2011.

[3] Multimodal architecture and interfaces, W3C,

http://www.w3.org/tr/2011/wd-mmi-arch-20110125/, last

checked august 25, 2011, 2011.

[4] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin

Limbourg, Laurent Bouillon, and Jean Vanderdonckt. A

unifying reference framework for multi-target user interfaces.

Interacting with Computers, 15(3):289–308, 2003.

[5] Sebastian Feuerstack, Marco Blumendorf, Veit Schwartze,

and Sahin Albayrak. Model-based layout generation. In

Paolo Bottoni and Stefano Levialdi, editors, Proceedings of

the working conference on Advanced visual interfaces.

ACM, 2008. Proceedings of the working conference on

Advanced visual interfaces 2008.

[6] David Harel. Statecharts: A visual formalism for complex

systems. Sci. Comput. Program., 8(3):231–274, 1987.

[7] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte,

Laurent Bouillon, Murielle Florins, and Daniela Trevisan.

Usixml: A user interface description language for context-

sensitive user interfaces. In Proceedings of the ACM

AVI’2004 Workshop" Developing User Interfaces with XML:

Advances on User Interface Description Languages, pages

55–62, 2004.

[8] Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin Coninx.

Gummy for multi-platform user interface designs: shape

multiply fix use me. In Proceedings of the working

conference on Advanced visual interfaces, AVI ’08, pages

233–240, New York, NY, USA, 2008. ACM.

[9] Francisco Montero, Vctor López-Jaquero, Jean

Vanderdonckt, Pascual González, Mará Dolores Lozano, and

Quentin Limbourg. Solving the mapping problem in user

interface design by seamless integration in idealxml. In DSV-

IS, pages 161–172, 2005.

[10] Fabrizio Morbini. Scxmlgui.

http://code.google.com/p/scxmlgui/, Last checked August 25,

2011. 2011.

[11] Giulio Mori, Fabio Paternò, and Carmen Santoro. Ctte:

Support for developing and analyzing task models for

interactive system design. IEEE Trans. Software Eng.,

28(8):797–813, 2002.

[12] Adrian Stanciulescu, Quentin Limbourg, Jean Vanderdonckt,

Benjamin Michotte, and Francisco Montero. A

transformational approach for multimodal web user

interfaces based on usixml. In ICMI ’05: Proceedings of the

7th international conference on Multimodal interfaces, pages

259–266, New York, NY, USA, 2005. ACM Press.

[13] Jean Vanderdonckt and Pierre Berquin. Towards a very large

model-based approach for user interface development. In

UIDIS, pages 76–85, 1999.

Fig. 9. Augmented Drag-and-Drop between a shopping cart

within webpage (left) and the augmented scene (right)

