

Model-based Design and Generation of a Gesture-based
User Interface Navigation Control

Sebastian Feuerstack, Mauro dos Santos Anjo, Ednaldo B. Pizzolato

Universidade Federal de São Carlos, Rodovia Washington Luís, km 235

São Carlos - São Paulo – Brasil

{sfeu, mauro_anjo, ednaldo}@dc.ufscar.br

ABSTRACT

The gesture-based control of interfaces could enable

interaction in situations where hardware controls are

missing and support impaired people where other controls

fail. The rich spectrum of combining hand postures with

movements offers great interaction possibilities but requires

extensive user testing to figure out an optimal control with

a sufficient control performance and a low error rate.

In this paper we describe a declarative, model-based

gesture navigation design based on state charts that can be

used for the rapid generation of different prototypes to

accelerate user testing and comparison of different

interaction controls. We use the declarative modeling to

design and generate several variants of a gesture-based

interface navigation control. The models are described

using state charts and are transformed to state machines at

system runtime. They can be directly executed to form a

multimodal interaction.

Keywords

Model-driven design of user interfaces (MDDUI), Interface

navigation, Hand-Gesture Recognition, HCI.

1. INTRODUCTION

Using gestures to control user interfaces could enable

interaction in situations where hardware controls are

missing, for instance, wall-sized displays [7] and could

support disabled people to interact with a computer where

other controls fail.

Different to common hardware supported interaction

controls like mouse and keyboard setups or joysticks for

instance, gesture interaction does not suffer from a

predefined and limited command setup. The amount of

possible gestures is only limited by the users’ creativity.

Gesture recognition has been practiced for a long time

driven by e.g. software that detects coloured gloves or even

the bare hands using video cameras.

Since we are interested in comparing different gesture-

based interface navigation controls, we are confronted with

the problem of quickly implementing different variants of

interactions with the same application. Gesture-based

interaction offers a rich set of possibilities by combining

hand movements and postures to control an interface.

Therefore, we propose a new level of abstraction for

constructing multimodal interfaces: declarative models to

design and specify the way of interaction. Different to

writing source code, declarative modelling is less technical

and requires no programming skills. Further on, it eases the

re-design of interaction to address e.g. different preferences

or certain disabilities of users. We understand the

declarative modelling as the next step towards end-user

development that enables users without programming skills

to change and configure their preferred ways of interaction.

In this paper we focus on presenting our approach of

modelling gesture-based interaction based on state-charts

that can be directly executed to run a multimodal interface.

We used this approach to design and test several ways of

navigating through an interface using gestures and postures.

We present the three most promising designs to explain our

modelling approach.

The paper is structured as follows: The next section

discusses related work regarding frameworks to quickly

prototype multimodal interaction and the model-driven

design of user interfaces (MDDUI) in general. Section 3

presents our approach for designing gesture-driven

interactions based on state-charts and gives details about

the gesture recognitions (3.1), the modeling of the

corresponding graphical user interface (3.2), as well as our

notation for multimodal mappings (3.3) that can flexibly

combine both to form a multimodal user interface. Finally,

section 4 states future work.

2. RELATED WORK

Recent research has focused on evaluating different forms

of gesture-based interaction to control interfaces displayed

on wall sized displays [7]. Several frameworks have been

proposed to ease the creation of multimodal interaction

controls like the Open Interface Framework [9] or Squidy

[8] for instance by assembling multimodal controls

including gestures out of components. These frameworks

focus on bridging different interaction technologies by

enabling the interconnection of device drivers and signal

processing algorithms to form new kinds of multimodal

interaction setups. But the specification of how an

application is controlled with an assembled interaction

setup is still done at the source code level. Further on, the

actual interaction inside the application that specifies what

happens if the user issues a certain gesture in a certain state

of the application is still a programming task as well.

The model-driven development of user interfaces has been

around for a long time to tackle this issue and resulted in

several connected design models that have been

summarized by the CAMELEON Reference Framework [3]

and by user interface languages such as USIXML [11]. But

it has been applied to develop interfaces for pre-defined

platforms only, such as to design interfaces for small

screens of cell phones, for speech interfaces or to develop

television and 3D interfaces for instance. Multimodal

systems have been addressed by these approaches only to a

very limited extend [13, 10].

These MDDUI approaches suffer from the fact that they

introduce new languages and design processes through

several abstract models that need to be learned by the

designer. Additionally they require anticipation skills to

understand how manipulations in the abstract model design

are reflected in the final generated interface. Therefore, we

decided to use state charts for interaction modelling, which

has the advantage that they are already widely known and

have a small sized basic vocabulary (mainly states and

transitions driven by events).

State machines have been widely used in Case-Tools and

are already standardized as part of UML and the W3C

multimodal framework with the SCXML
1
 standard and

therefore reduce the entry barrier for developers as various

tools are already available to design state machines.

1
http://www.w3.org/TR/2011/WD-scxml-20110426/

3. MULTIMODAL INTERACTION DESIGN

Hand gestures are already widely used as a natural way of

human-computer interaction [1, 2]. But the definition of

suitable gestures depends on various factors and extensive

user testing. These factors include for instance: the hand

poses chosen, if one or both hands should be considered,

the feedback of the interface when a gesture is recognized,

delay on processing and communication, ergonomics,

intuitiveness of the interaction, among other possible

factors.

In our approach the interaction resources are declaratively

modeled, directly executed and can be flexibly added and

removed to the system by using the multimodal mappings.

Therefore we argue that this approach eases to adapt the

interface to different styles of gesture-based interaction

considering, for instance, the actual situation of the user (is

only one hand or are both hands available for interaction?),

their age and training level (how fast should the gestures be

interpreted?) or individual preferences about certain

gestures (e.g. less exhausting or less explicitly gestures).

In our test cases we designed different gesture-based

interactions and have considered four gestures that can

trigger interface actions in two ways:

 A fixed hand posture: when the system recognizes a

static gesture it triggers a single action and will wait for

the next different posture to trigger the subsequent action.

A fixed posture can have a temporal component like a

ticker for instance to trigger the same event in fixed

intervals.

 A motion-related gesture: When a certain gesture is

recognized, the action triggered varies according to the

movement detected.

3.1 Specification of a Gesture-and Posture Interaction
Resource

We based the implementation of the gesture recognition on

the project of finger spelling recognition of sign language

[12]. The system is able to recognize gestures using colored

gloves by doing HSV color space based segmentation. We

used 25x25 pixels sized images of the gloves and trained an

Fig.1. (a) The first variant of the gesture-based navigation control.

(b) The four basic gestures we selected to navigate through the interface.

IR:IN:hand_gestures

NoHands

one_hand

wait_one

previous

select

OneHand

no_hands

selected

confirmed

confirm

select

next

next

Navigation CommandPredecessor

Speed started
entry/start_ticker

exit/stop_ticker

[1s]/tick

previous

Successor

previous

next

tick

tick

start_p
tick

start_n
tick

tick

previous

closer/farther

next

closer/farther

 select confirm

 a)

b)

http://www.w3.org/TR/2011/WD-scxml-20110426/

artificial neural network Multi-Layer Perceptron (MLP)

with an architecture of 625x100x4 neurons in each layer.

This network is able to classify the four gestures.

Figure 1a depicts a state chart that specifies our first variant

of a gesture-based navigation control. It supports a basic

movement to the next or the previous user interface

element with the two gestures on top of figure 1b). The

navigation speed is defined by a ticker that throws a “tick”

event. For the first variant, we use a static ticker that throws

a tick every second. Thus, if the user shows a “previous”

gesture for instance, the state machine enters the super state

“Predecessor” and starts with the initial “start_p” state.

With every tick and as long as the user remains showing

the previous gesture the “previous” state is entered with

every tick event again and navigation step is performed by

the interface. By showing the “select” gesture (figure 1b)

the state machine switches to the “Command” mode, stops

the navigation, and selects the actual user interface element

as soon as the user confirms the selection with a “confirm”

gesture.

The two state machines of figure 2 represent two

navigation alternatives. For the sake of brevity, only the

differences to the one of figure 1 are illustrated. Thus, the

“Predecessor”, “Successor”, and “Command” states remain

the same as already depicted in figure 1. The state chart of

figure 2a) introduces an adjustable ticker. The time “t”

between each “tick” could be adjusted by moving the hand

that shows the previous or next gesture closer to or farther

from the camera. Moving the hand closer to the camera

results in a smaller ticker value (from 1200ms up to a speed

of 800ms between the ticks). The variant 3 (figure 2b)

additionally enables the user to switch between the timed

ticker and by explicitly issuing ticks by moving the hand

closer to or farther away from the camera. These

movements temporarily disable the ticker (since it is not

modeled as part of a parallel state) and enable a quicker

navigation just by moving the hand.

To get the interaction running we need at least one mode to

give the user a way to control the application and a media

that presents the interface to the user. In this subsection we

described the mode design, whereas in the following

subsection we focus on a graphical, web-based presentation

as an example for the media design.

3.2 Specification of graphical interface elements

Figure 3 shows a screenshot of the user interface that we

used for testing the interface navigation. It shows an

excerpt of a table of 5x5 cells, each consisting of a unique

Fig.2. (a) Second Variant: To manipulate the navigation speed the user can move his hand closer to or

farther away from the camera.

(b) Third Variant: Instead of a timed navigating step every second, by every hand movement closer or

farther away from the cam a navigation step is done.

Fig.3. Detail of a screenshot from the user interface for testing the gesture-based navigation.

IR:IN:hand_gestures

NoHands

one_hand

wait_one

select

OneHand

no_hands

selected

confirmed

confirm

select

Navigation
Command

SpeedAdjustment

fastest
entry/

t = 800ms;

restart_ticker

faster
entry/

t = 1000ms;

restart_ticker

closer

farther

previous

nextnormal
entry/

t = 1200ms;

restart_ticker

closer

farther

previous
next

next

Predecessor

previous

Successor

tick

tick

start_p
tick

start_n
tick

Speed
started

entry/start_ticker

exit/stop_ticker

[1s]/tick

IR:IN:hand_gestures

NoHands

one_hand

wait_one

select

OneHand

no_hands

selected

confirmed

confirm

select

Navigation

Command

 Movement

closer/tick

closer

closer/tick

farer

farther/tick

closer/tick

farther/tick

farer/tickto_clock

previous

next

previous
next

next

Predecessor

previous

Successor

tick

tick

start_p
tick

start_n
tick

Speed started
entry/start_ticker

exit/stop_ticker

[1s]/tick

tick

entry/start_timeout

exit/stop_timeout

 a)

b)

letter and a radio box that could be selected. It was the

users’ task to navigate from the top-left box “A” to a cell

that is marked with a grey background and select the button

of this cell.

To specify this kind of interaction we use state chart

models in the same way as we describe the posture

recognition mode in the last section. But for an interface

representation we use two models. One abstract model

describing the interaction in a media independent way and

a concrete model that considers specific features of a

certain media. In our prototype of figure 4 the basic

interaction element is a list that supports selecting one

element at a time as well as navigating between its

elements. Figure 4a shows the abstract specification of a

list element whereas figure 4b adds its concrete

specification for a graphical interface, describing a list

element as a radio button that can be additionally “marked”

(the grey background in figure 3 to set the navigation target

for the user).

At runtime both state charts that complement each other,

get instantiated as state machines (for each list element).

The abstract part contains the core of the interaction (for

the list element: to be able to be in the user’s focus, to be

selectable, and “draggable”. The concrete part adds

semantics relevant for graphical interfaces, such as it

defines an element’s focus (of the user) as “highlighting”

(element A is highlighted in figure 3) or “positions”

elements on an interface instead of just “organizing” them

(organizing involves identifying an element’s neighbours,

whereas positioning refers to a graphical coordinate

system). Finally, the specification of figure 4b adds the

persistent (see history flag) “markable” feature to the radio

button, which is specified by a parallel running “Markable”

super state.

Both mode and media are glued together by multimodal

mappings. These mappings are stored in a separate model,

which enables changing them without touching the other

models. Similar to the CARE properties they describe

relations between different modes or media and are used to

define basic multimodal fusion or fission.

3.3 Mappings

To define how the graphical interface of figure 3 should

react upon gestures, we use multimodal mappings that

observe state changes (stated by boxes with rounded

corners) and generate events (defined by boxes with sharp

edges) targeted to the graphical interface or to other media

such as to generate sound. Figure 5 depicts two exemplary

mappings that implement a basic fusion between the

graphical interface and a certain gesture control, as well as

a basic fission, which distributes the result to both the

graphical presentation as well as plays a sound.

The first one (a) implements the navigation to the next

element of the interfaces and plays a “tick” sound on each

successful next movement. There are several operators that

can be used to define mappings that we have presented

earlier [4]. In this exemplary mappings the complementary

operator, C, states observations that have to happen in a

certain temporary windows (Tw) and the redundancy

operator, R, publishes information to different media (such

as changing to the next element and playing a “click” sound

at the same time. The second mapping (figure 5b) depicts a

mapping that implements a selection of an element of a list

that is in the actual focus of the user.

Besides multimodal mappings we introduce

synchronization mappings that are in charge of mediating

between the abstract and the concrete media representation.

Technically they communicate state changes between start

machines and enable to synchronize different concrete

medias (such as different graphical user interface formats)

that share the same abstract model. Thus, in our example, a

synchronization mapping connects bi-directionally the

abstract “focused” state of figure 4a to the concrete

“highlighted” state of the MarkableRadiobutton state chart

(figure 4b). Every time the user issues a next posture and

therefore triggers the mapping of figure 5a, the abstract

“focus” is moved to the next element and is synchronized

to “highlight” the corresponding RadioButton (figure 4b).

Fig.4. State chart of an abstract SingleChoiceElement (a) and an

enhanced RadioButton that is “markable” (b).

Fig.5. Mappings to connect sound media and a gesture-driven control to the interface.

presenting

chosen

unchosen

unchoose

choose [in(focused)] /

 aios=find(parent.childs.chosen);

aios.all.unchoose

Selectable

Draggable

defocused

focus

[else]

focused

drag

dragging

drop
 next||prev||parent

/aio=find(next||prev

||parent); aio.focus

unchoosed [in(unchosen)]

/self.choose

defocus

AISingleChoiceElement

initialized

suspended
organize

organized

present suspend

organize

H

displaying

Highlightable

displayed

highlight

highlighted

MarkableRadioButton

initialized

hiddenposition positioned

hide

position

unhighlight

Markable

unmarked

mark

marked

unmark

display

H

C
aio=AIO.focused

Tw<0,3s

aio.nextGesture.OneHand.Navigation.Successor.next
R

Sound.click

C
aio=AIINChoose.focused

Tw<0,3s

aio.chooseGesture.OneHand.Command.confirmed
R

Sound.plop

 a)

b)

4. CONCLUSIONS AND FUTURE WORK

With our approach by specifying interaction based on state

machines, different forms of interactions could be

efficiently designed and generated since only the state

machines have to be changed. The mappings to describe the

overall multimodal interaction have to be changed only if

more than one mode of interaction needs to be manipulated.

This was not the case in our prototypes, since we were

focusing on comparing different gesture-based navigation

alternatives without changing the other modes (the

graphical interface or the sound feedback). We already

applied the presented model-based design approach in

several projects [4, 5] as well as performed user tests to

compare the three different navigation variants that we

described in the paper [6].

Differently to the state chart-based modelling of user

interface elements that is already supported by tools, we

rely on the SCXML standard and we are using a proprietary

notation to design the mappings. Currently we are trying to

formalize the notation and investigate in a suitable tool

support that enables a developer to design and generate

these mappings. Additionally, we are enhancing the

notation to enable the design of more complex multimodal

interactions where fusion data is retrieved by several

different modes.

The software prototype as well as the entire abstract model

specification can be downloaded from our website

(http://www.multi-access.de).

ACKNOWLEDGMENTS

Sebastian Feuerstack is grateful to the Deutsche

Forschungsgemeinschaft (DFG) for the financial support of

his work.

REFERENCES

1. Joao Luiz Bernardes Jr., Ricardo Nakamura, and Romero

Tori. Design and implementation of a flexible hand

gesture command interface for games based on computer

vision. In Proceedings of the 2009 VIII Brazilian

Symposium on Games and Digital Entertainment,

SBGAMES ’09, pages 64–73, USA, 2009.

2. Lars Bretzner, Ivan Laptev, and Tony Lindeberg. Hand

gesture recognition using multi-scale colour features,

hierarchical models and particle filtering. In Proc. Face

and Gesture, pages 423–428, 2002.

3. Gaelle Calvary, Joelle Coutaz, David Thevenin, Quentin

Limbourg, Laurent Bouillon, and Jean Vanderdonckt. A

unifying reference framework for multi-target user

interfaces. Interacting with Computers, 15(3):289–308,

2003.

4. Sebastian Feuerstack, Ednaldo Pizzolato; Building

Multimodal Interfaces out of Executable, Model-based

Interactors and Mappings; HCI International 2011; 14th

International Conference on Human-Computer

Interaction; J.A. Jacko (Ed.): Human-Computer

Interaction, Part I, HCII 2011, LNCS 6761, pp. 221--228.

Springer, Heidelberg (2011), 9-14 July 2011, USA.

5. Sebastian Feuerstack, Allan Oliveira, Regina Araujo;

Model-based Design of Interactions that can bridge

Realities - The Augmented Drag-and-Drop;13th

Symposium on Virtual and Augmented Reality (SVR

2011), ISSN 2177-676, 23th-26th May 2011, Brazil

6. Sebastian Feuerstack, Mauro Dos Santos Anjo, Jessica

Colnago und Ednaldo Pizzolato; Modeling of User

Interfaces with State-Charts to Accelerate Test and

Evaluation of different Gesture-based Multimodal

Interactions. Workshop:“Modellbasierte Entwicklung von

Benutzungsschnittstellen (MoBe2011)”, Informatik 2011,

4-7. October 2011, Germany

7. Fredrik Fikkert. Gesture Interaction at a Distance. PhD

thesis, Universiteit Twente, Centre for Telematics and

Information Technology, 2010.

8. Werner A. Kaenig, Roman Raedle, and HaraldReiterer.

Interactive design of multimodal user interfaces -

reducing technical and visual complexity. Journal on

Multimodal User Interfaces, 3(3):197–213, Feb 2010.

9. Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean

Vanderdonckt, and Benoit Macq. An open source

workbench for prototyping multimodal interactions based

on off-the-shelf heterogeneous components. In EICS ’09:

Proceedings of the 1st ACM SIGCHI symposium on

Engineering interactive computing systems, pages 245–

254, New York, NY, USA, 2009. ACM.

10. Grzegorz Lehmann, Marco Blumendorf, Sebastian

Feuerstack, and Sahin Albayrak. 2008. Utilizing dynamic

executable models for user interface development. In T.C.

Nicholas Graham and Philippe Palanque, editors,

Interactive Systems – Design, Specification, and

Verifications. Springer Verlag Gmbh.

11. Quentin Limbourg, Jean Vanderdonckt, Benjamin

Michotte, Laurent Bouillon, and Victor Lopez-Jaquero.

USIXML: A language supporting multi-path

development of user interfaces. In RemiBastide, Philippe

A. Palanque, and Joerg Roth, editors, EHCI/DS-VIS,

volume 3425 of Lecture Notes in Computer Science,

pages 200–220. Springer, 2004.

12. Ednaldo B. Pizzolato, Mauro dos Santos Anjo, and

Guilherme C. Pedroso. Automatic recognition of finger

spelling for libras based on a two-layer architecture. In

Proceedings of the 2010 ACM Symposium on Applied

Computing, pages pages 969–973, 2010.

13. Adrian Stanciulescu, Quentin Limbourg, Jean

Vanderdonckt, Benjamin Michotte, and Francisco

Montero. A transformational approach for multimodal

web user interfaces based on usixml. In ICMI ’05:

Proceedings of the 7th International Conference on

Multimodal Interfaces, pages 259–266, New York, NY,

USA, 2005. ACM Press

