
Modeling of User Interfaces with State-Charts to

Accelerate Test and Evaluation of different Gesture-

based Multimodal Interactions

Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

Universidade Federal de São Carlos, Departamento de Computacão,

Rod. Washington Luis, km 235 - SP, Brazil

{sfeu, mauro_anjo, jessica_colnago, ednaldo}@dc.ufscar.br

New forms of interactions such as the gesture-based control of interfaces could

enable interaction in situations where hardware controls are missing and

support impaired people where other controls fails. The rich spectrum of

combining hand postures with movements offers great interaction possibilities

but requires extensive user testing to figure out a user interface navigation

control with a sufficient performance and a low error rate.

In this paper we describe a model-based interface design based on assembling

interactors and multimodal mappings to design multimodal interfaces. We

propose to use state charts for the rapid generation of different user interface

controls to accelerate user testing. First we describe how our approach can be

applied to design direct manipulation interfaces that rely on a mouse-based

interface control. Then we present how we applied the interactor based design

to quickly generate several variants of a gesture-based interface navigation

control to demonstrate our approach. We compare the three most promising

variants in a user test and report about the test results.

1. Introduction

Using gestures to control user interfaces could enable interaction in situations where

hardware controls are missing like, for instance, wall-sized displays [6] and could

support disabled people to interact with a computer when other controls fails.

Different to commonly used hardware like, for instance, mouse and keyboard

setups or joysticks, gesture interaction does not suffer from a predefined and limited

command setup. The amount of possible gestures is limited only by the users’

creativity. Gesture recognition has been practiced since a long time driven by e.g.

software that detects coloured gloves or even the bare hands using video cameras.

Recent frameworks such as Squidy [7] or the Open Interface Framework [8]

support assembling multimodal controls including gestures out of components. These

frameworks focus on connecting different interaction technologies by enabling the

interconnection of device drivers and signal processing algorithms to form new kinds

of multimodal interaction setups. But the specification of how an application is

controlled with an assembled interaction setup is still done at the source code level.

The motivation of our work is to compare and evaluate different forms of

interactions that can be performed with a multimodal interaction setup. We are

2 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

especially interested in understanding how changes of interactions within a certain

combination of modes and media influence the interaction performance, and to learn

about the interaction preferences of different user groups. Thus, we were confronted

with the problem of quickly implementing different ways for interacting with the

same application.

Recent approaches on model-driven development of user interfaces [2,9] have

focused on defining processes and tools for the generation of interfaces for different

devices but have been only applied them to generate multimodal interfaces to a very

limited extend [13]. Further on, these approaches suffer from the fact that they

introduce new languages and design processes through several abstract models that

need to be learned by the designer. Additionally, they require anticipation skills to

understand how manipulations in the abstract model design are reflected to the final

generated interface.

Therefore, we decided to use state charts for interaction modelling, which have the

advantage of being widely known and having a small basic vocabulary (states and

transitions driven by events). Further on, there are already standards like e.g. SCXML

and tools that support the graphical state machine design.

In this paper, we focus on presenting our approach of modelling interactions by

assembling user interface interactors. We specify these interactors by state-charts.

They can be directly executed to run a multimodal interface. The approach enables

manipulation and extensive monitoring of the interaction, during user testing, since

the state charts models are kept alive at runtime and the interaction can be logged and

observed easily.

The paper is structured as follows. The next section introduces the interactor-based

modelling of user interfaces and explains how their behavior is specified. Thereafter,

in section 3, we describe how we can combine interactors to form different

interactions by using declarative multimodal mappings to design basic direct-

manipulation interfaces using a mouse as a running example.

In section 4 we apply our approach to design and test three variants of navigating

through an interface using gestures and postures. We present the three most promising

designs according to our modelling approach and report the results of some tests with

users considering navigation efficiency and error rate. Section 5 presents related work

and section 6, the conclusions.

2. Interactor-based Modeling

Using interactor models to describe interactive systems is an already well known and

matured approach and has been extensively discussed, for instance, in [10]. They can

be thought as an architectural abstraction similar to objects in object-oriented

programming [10]. Several definitions of the interactor term have been proposed so

far like for instance the PISA [11] or the YORK [3] interactor. Our approach relates

to the latter one, which defines an interactor as:

3

― a component in the description of an interactive system that encapsulates a state,

the events that manipulate the state and the means by which the state is made

perceivable to the user of the system.‖ [4]

Different to these early approaches that focused on the design of graphical interfaces,

we assemble multimodal user interfaces by using interactors. An interactor can

receive input from the user and send output from the system to the user. Each one is

specified by a state machine that describes the interactor’s behaviour. A data structure

is used to store and manipulate information that is received by each interactor or sent

to others.

We use UML class diagrams to specify the data structure. Each interactor is

associated with at least one class that needs to inherit from an abstract ―Interactor‖

class. This class contains the basic data structure to support interactor persistence such

as storing the current states of an interactor and encapsulates the functionality to load

and execute the state machines.

Figure 1 shows the interactor class and its relations of the three basic interactors:

the Abstract Interactor Object (AIO), the graphical Concrete Interactor Object (CIO),

and Interaction Resource interactors, which describe the interaction capabilities of

physical devices.

The Concrete User Interface (CUI) model is used to design a user interface for a

certain mode or media. The Abstract User Interface (AUI) model describes the part of

the interface that contains the behaviour and data specification shared among all

modes or media. Interactors share the same database (which is currently a tuple space)

to store and manage their data. Each interactor (that e.g. represents a button on a

concrete graphical interface) is initiated several times to reflect all occurrences of e.g.

a button in an application. This interactor is further on initiated at the AUI model

level, and additionally for each supported modality at the CUI level. Additionally, at

system run-time, interaction resource (IR) interactors are instantiated once for each

Interaction Resource Model

Concrete UI Model

IRMode

Interaction

Resource

CIO

leftright

updown

- x,y,width,height
- layer,col,row,
- minheight,fontsize,...

CIC
- cols,rows

AIC

childs

parent

Interactor

- statemachine
- states, name

SelectableImage

AIO

AIChoiceElement

IRMedia

Button
Hand

Gesture
Screen

Abstract

 UI Model

Fig. 1. Interactor relationships of the user interface models.

4 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

device that is connected to the system. IRs are, for instance, a gesture recognition that

supports a certain set of gestures or postures or a WII remote control that supports a

set of pre-defined gestures pointing to objects, and additionally has a joypad control.

2.1. Concrete Interface Interactors

Modeling a graphical interface requires the composition of screens by selecting

appropriate interactors like buttons, combo-boxes or a menu for instance. Our basic

interactor for all graphical CUI elements is depicted by the state machine in figure 2a.

The basic life-cycle includes a positioning phase in which the interactor calculates

its screen coordinates, a presentation phase in that the element navigation is defined,

as well as a disabled and hidden phase. During the presentation of a CIO interactor, a

user can navigate to the interactor that then becomes ―highlighted‖. This navigation is

processed by receiving events (specified in square brackets). After the first CIO

interactor has been highlighted, ―up‖, ―down‖, ―left‖, and ―right‖ events can be

processed to navigate to the next interactor. Each of those events ―unhighlights‖ the

currently highlighted interactor, lets it search the interactor that should be navigated to

(see ―find‖ method of figure 2a) and sends to this interactor a ―highlight‖ event.

Every CUI interactor is connected to an abstract interactor of the AUI model that

sums up all its mode and media independent behavior and data. Differently to

USIXML, in our approach there is no redundancy of knowledge between AUI and

CUI. This is also different to the CAMELEON-based MDDUI process [2] that

specifies a continuous refinement from more abstract to more concrete models (and

therefore the subsequent model contains the knowledge of the preceding ones) and

ends up with a transformation to a final user interface (source or executable code).

Instead of executing just the final user interface we require all user interface models

during system run-time. The advantage of it is that we can define relations between

modes and media even on the abstract level and can also add further ones during run-

time, which is not possible without re-engineering final user interfaces generated by

transformational processes.

Figure 2b depicts the AIO interactor that is linked to the CIO interactor. It has a

similar structure like the CIO interactor but a different semantic. Since the AIO is

used for all modalities it cannot consider a coordinate system where it can be

positioned. It, therefore, supports only a basic navigation to its preceding and

following AIO.

CUI:CIO:gfx

initialized

displayed

hidden

position

highlighted

positioning

positioned

calculated

ready

hide

CUI:CIO:presenting->isHighlighted

highlight
unhighlight

up||down||left||right

/cio=find(up||down||left||right);

cio.highlight

position

disabled

disablehide

AIO

initialized

defocused

focus

suspended

organize

defocus

organized

present

suspend

focused

organize

presenting

 next||prev||parent

/aio=find(next||prev

||parent); aio.focus

Fig. 2. The state machines of (a) the CIO and (b) the Abstract Interaction Object (AIO).

b) a)

5

2.2. Abstract Interface Interactors

A multimodal setup combines at least one media with several modes. Thus parts of

the interface interactors are output-related (e.g. sound or a graphical interface for

instance), whereas others serve to address the modes used by the user to control the

interface (like a joystick, speech, or a mouse, for instance). At the abstract, mode and

media independent model level this has two implications. First,: a) input needs to be

separated from output; and b) a continuous input or output (such as moving the mouse

or a displaying a graph) needs to be distinguished from a discrete one. The following

two sections describe how these implications could be addressed in an abstract user

interface model. First by organizing all AUI interactors based on these findings in a

static structure (a class diagram) and second, by specifying their behavior (by state

charts).

2.2.1. Static AUI Structure

Figure 3 shows the class diagram of the AUI. The AIO class that is the parent class of

all other classes of the AUI is derived from the ―Interactor‖ class, which is the base

class of all elements from all user interface models. It defines a name field that is a

unique identifier (inside one model) and a state field that stores its current states

The AUI distinguishes, in general, between an abstract interactor input (AIIN) and

output (AIOUT) elements, which could be either of a continuous or a discrete nature.

Continuous outputs are a graphical progress bar or a chart, a tone that changes its

pitch, or a light which can be dimmed, for instance. Discrete output could be

implemented in different ways, such as written text, sound or a spoken note.

Grouping of interactors is handled by abstract interactor containers (AIC). AICs

can be specialized to realize single (AISingleChoice) or multiple choices

(AIMultiChoice) and are derived from the discrete output class. A discrete output

class can be explicitly associated with every AIO, which we call AIContext. The

AIContext is used to add contextual information that helps the user to control the

interface or to understand the interface interactor. This could be, for instance, a

tooltip, a picture or a sound file.

User input could be performed in a continuous manner as well. Some examples

are: moving a slider or showing a distance with two hands. Discrete user inputs

(AIINDiscrete) could be performed by commands that are issued by voice, or by

pressing a physical or virtual button, for instance. We consider choosing one or

several things from a list as user input as well (AISingleChoose and AIMultiChoose

respectively).

In order to support distributing input and output to different devices, we strictly

separate user input from output in the user interface models. There are some

implications of this strict separation: For instance we require separating user choices

to two different elements: Whereas a list of elements to choose from is considered as

output (since it just signalizes the information that a user can choose together with a

grouping of interactors), the current interactors to choose from are modeled separately

as AIIN (by AISingleChoiceElement and AIMultiChoiceElement).

6 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

Finally, each AIO can be associated to an AIReference, which could be a label, a

voice command, pressing a hotkey, pointing to it or by a categorizing color, for

instance. AIReferences can be used for user interface navigation, e.g. to jump to a

certain element or to relate elements by dragging and dropping them. A famous

example is ―put that there‖ where ―that‖ and ―there‖ are related to and finally

resolved by AIReferences during multimodal fusion.

2.2.2. AUI Behavior Description

We complement each class of the static class structure with a state chart that describes

the complete life cycle of a user interface element.

Looking at the AUI model, the basic AIO state machine that is used by all other AUI

elements has already been described by figure 2b. For the sake of brevity we will

discuss the most interesting state machines of the AUI only. But a comprehensive

specification of the entire project is available online
1
.

Figure 4a illustrates the more complex state machine of the

AISingleChoiceElement that represents an element of a single choice list

(AISingleChoice). It is specified to substitute the AIO state machine’s ―presenting‖

super state and allows being ―chosen‖, ―dragged‖ and ―dropped‖. A single choice

only permits one element to be chosen at a time. This behavior is specified in figure

4a by the ―choosing‖ state that takes care of that as soon element is chosen and all

other elements of the same AISingleChoice list get un-chosen. By the history symbol

1 MINT AUI model specification:http:// <blinded for review>

Interactor

AIO

AIC

child
0..n

parent
1

nextprev 1

1

Structure:AUI

AIMultiChoice

AICommand

AIOUT
AIIN

AISingleChoice

AIChoice

Element

AIINContinous AIINDiscrete
AIOUTContinousAIOUTDiscrete

AIReference

AIContext

context

label
0..n

1

AISingleChoiceElement AIMultiChoiceElement

AIChoice

Fig. 3. Static AUI class diagram.

7

―H‖ we define that the choice is persistent, even if the SingleChoiceElement gets

deactivated and hidden from the user interface.

Figure 4b depicts the container for the AISingleChoiceElement that offers the

capability to receive ―drop‖ events if it is in the focus of the user (see ―in(focused)‖

condition). While in ―dropping‖ state it retrieves all elements that are in ―dragging‖

states and add them as children to it and notifies these dropped interactors that they

have been successfully dropped.

2.3 Interaction Resource Interactors

For navigating through the interface several modes can be considered as appropriate.

For the sake of simplicity, we intend to focus at the mouse. We design it as a

composed interaction resource (IR) interactor and consists of a set of more basic

interactors: a wheel, two buttons and a pointing interactor like shown in figure 5. The

behavior part of the mouse resource interactors could be defined straight-forward like

e.g. by the two state machines characterizing the pointer and a button. The pointer

[in(focused)]

/aio=AIChoiceElement.all(dragging);

add(aio) and aio.drop

[in:focused]

choose

chosen

unchosen

[in(focused)]

drag

dragging

unchoose drop

H

choosing

/ aios=find(parent.childs.chosen);

aios.all.unchoose

AUI:AIC:AISingleChoice:presenting

AUI:AIO:AIC:presenting

listing dropped

/ self.unfocus;

AIChoiceElement.focus

dropping

[in(focused) drop

AUI:AIChoiceElement:presenting

AUI:AIChoiceElement:

 AISingleChoiceElement:presenting

Fig. 4. The (a) AISingeChoiceElement and the (b) SingleChoice List statemachines.

IR:IN:Pointer

stopped

[move] [stop]

moving

IR:IN:Button

released

[press] [release]

pressed

IR:IN:WheelIR:IN:Mouse IR:IN:Mouse

Mouse

ButtonWheel Pointer

LeftButton RightButton

- x,y- z

Fig. 5. The class diagram and state chart of a mouse.

b) a)

8 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

could be ―moving‖ or ―stopped‖. While the pointer is in the ―moving‖ state, it

communicates it’s x and y coordinates. The pointer is considered to be ―stopped‖ if

there is no movement for a particular time span. In the same manner, a mouse button

can be described by a state machine to communicate its’ two states: ―pressed‖ and

―released‖.

3. Model Synchronization and Multimodal Mappings

We use mappings as the glue to combine the AUI, CUI and interaction resource

specifications. The mappings rely on the features of the state charts that can receive

and process events and have an observable state. Thus, each mapping can observe

state changes and trigger events.

We distinguish between synchronization and multimodal mappings. The former

ones synchronize the interactor’s state machines among different models of

abstractions, like between task and AUI or AUI and CUI interactors. The latter ones

are used to synchronize modes with media.

Synchronization mappings (figure 6a) are pre-defined together with the interactors

and are automatically considered when the designer assembles a user interface by

using these interactors. Multimodal mappings can be pre-defined as well (e.g. to

support a certain form of interaction with a particular device or to implement an

interaction paradigm like drag-and-drop) but are usually designed during application

design (e.g. stating that a security critical command must be confirmed with a mouse

click and a voice command). Figure 7b depicts an exemplary multimodal mapping

specifying to change the highlighted graphical UI elements based on the current

pointing position. Boxes with rounded edges stand for ―observations‖ of state

changes. Boxes with sharp edges are used to define backend function calls or the

triggering of events. The mapping observes the state of the pointer interactor and gets

triggered as soon as the pointer enters the state ―stopped‖. The ―C‖ specifies a

complementary relation, which requires all inputs of the C to be resolved for the

mapping to get triggered. Therefore, as soon as the pointer has been stopped and

coordinates of the stopped pointer could be retrieved, the findCIO function is called to

check if there has been a CUI positioned on the coordinates, and if it is currently not

highlighted. The complementary mapping is executed only if all 3 conditions can be

evaluated. When that happens, then a highlight event is fired to the CIO.

Common interaction paradigms can be specified by combining basic interactors

(introduced in the previous sections) with multimodal mappings.

CIO.highlighted

CIO.unhighlighted AIO.defocus

AIO.focus C cio.highlight

x,y=Pointer.stopped

cio=CUI.findCIO(x,y)

cio.unhighlighted

Fig. 6. (a) CUI with AUI synchronization. (b) Basic complementary pointer mapping.

b) a)

9

Figure 7 depicts a mapping that specifies the drag-and-drop functionality for elements

(AIChoiceElement) of an abstract list (AIChoice) on the AUI model level that we

have presented earlier. The mapping gets triggered if (a) the mouse button is pressed

(b) while a list (AIChoose) is ―focused‖ (e.g. the mouse pointer is currently positioned

over this list) and (c) at least one entry of the list is ―chosen‖).

In the last sections we have introduced different interactors on the abstract and

concrete model level, have synchronized them using synchronization mappings and

connected them to an exemplary interaction resource interactor – a mouse - using

multimodal mappings to explain our approach. The next section applies these

concepts to design and evaluate several gesture and posture-based forms of

controlling an interface. The rich spectrum of combining hand postures with

movements offers great interaction possibilities but requires extensive user testing to

figure out an optimal control with a sufficient control performance and a low error

rate.

4. Modelling Multimodal Interaction with Gestures and Postures

Hand gestures are already widely used as a natural way of human-computer

interaction [1]. But the definition of suitable gestures depends on various factors and

extensive user testing. These factors include, for instance, the hand poses chosen, if

one or both hands should be considered, the feedback of the interface when a gesture

is recognized, delay on processing and communication, ergonomics, intuitiveness of

the interaction, among other possible factors.

In our test cases we designed different gesture-based interactions and have

considered four hand postures and one gesture that can trigger interface actions in two

ways:

 A fixed hand posture: When the system recognizes a static gesture it triggers a

single action and will wait for the next different posture to trigger the subsequent

action. A fixed posture can have a temporal component like a ticker for instance to

trigger the same event in at fixed intervals.

 A motion-related gesture: When a certain gesture is recognized, the triggered

action varies according to the movement detected.

C
dst=AIChoice.focused

C

Tw<0,3s

aois.drag
dst.drop(aios)

src=AIChoose.focused

Tw<0,3s
b=Button.pressed

aios=src.childs.all(chosen) b.released

src.drop(aios) fail

Fig. 7. Basic Drag-and-Drop mapping on the AUI model abstraction level.

10 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

4.1. Specification of a Gesture-and Posture Interaction Resource

We based the implementation of the gesture recognition on the project of finger

spelling recognition of sign language [12]. The system is able to recognize gestures

using coloured gloves by doing segmentation based on the HSV colour space. We

used images of 25x25 pixels and trained an artificial neural network Multi-Layer

Perceptron (MLP) with an architecture of 625x100x4 neurons in each layer. This

network is able to classify the different postures.

Figure 8a depicts a state chart that specifies our first variant of a gesture-based

navigation control. It supports a basic movement to the next or the previous user

interface element with the two gestures in top of figure 8b). The navigation speed is

defined by a ticker that throws a ―tick‖ event. For the first variant, we use a static

ticker that throws a tick every second. Thus, if the user shows a ―previous‖ gesture for

instance, the state machine enters the super state ―Predecessor‖ and starts with the

initial ―start_p‖ state. With every tick and as long the user remains showing the

previous gesture, the ―previous‖ state is entered with every tick event again and

navigation step is performed by the interface. By showing the ―select‖ gesture (figure

8b) the state machine switches to the ―Command‖ mode, stops the navigation, and

selects the current element. The user can, then, confirm the selection by performing

the confirmation gesture.

IR:IN:hand_gestures

NoHands

[one_hand]

wait_one

previous

select

OneHand

[no_hands]

selected

confirmed

[confirm]

select

next

next

Navigation
CommandPredecessor

 Ticker

started

[1s]/tick

previous

Successor

previous

next

tick

tick

previous /

closer / farer

next /

closer /farer

 select confirm

start_p
tick

start_n
tick

Fig. 8. (a) The first variant of the gesture-based navigation control.

(b) The four basic gestures we selected to navigate through the interface.

 a)

b)

11

The two state machines of figure 9 show two navigation alternatives. For the sake

of brevity only the differences to the one of figure 8 are illustrated. Thus, the

―Predecessor‖, ―Successor‖, and ―Command‖ states remain the same as already

depicted in figure 8. The state chart of figure 9a) specifies the second variant and

introduces an adjustable ticker. The time ―t‖ between each ―tick‖ could be adjusted by

moving the hand that shows the previous or next gesture closer to or farer from the

camera. Moving the hand closer to the camera results in a smaller ticker value (from

1200ms up to a speed of 800ms between the ticks). The variant 3 (figure 9b)

additionally enables the user to switch between the timed ticker and by explicitly

issuing ticks by moving the hand closer to or farer away from the camera. These

movements temporary disable the ticker (since it is not modelled as part of a parallel

state) and enable a quicker navigation just by moving the hand.

To define how the interface should react on the gestures we defined two main

multimodal mappings that are depicted in figure 10.

The first one (a) implements the navigation to the next element of the interfaces and

plays a ―tick‖ sound on each successful next movement. There are several other

operators that can be used to define mappings that we have presented earlier [5]. In

this exemplary mappings the complementary operator, (C), states observations that

need to happen in a certain temporary windows (Tw) and the redundancy operator,

Fig. 9. (a) Second Variant: To manipulate the navigation speed the user can move his hand

closer to or farer away from the camera.

(b) Third Variant: Instead of a timed navigating step every second, by every hand movement

closer or farer away from the cam a navigation step is done.

C
aio=AIO.focused

Tw<0,3s

aio.nextGesture.OneHand.Navigation.Successor.next
R

Sound.click

C
aio=AIINChoose.focused

Tw<0,3s

aio.chooseGesture.OneHand.Command.confirmed
R

Sound.plop

Fig. 10. Mappings to connect sound media and a gesture-driven control to the interface.

b)
 a)

 a)

b)

12 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

(R), publishes information to different media (such as changing to the next element

and playing a ―click‖ Sound at the same time. The Second mapping (figure 10b)

shows a mapping that implements a selection of an element of a list that is in the

current focus of the user.

Figure 11 shows a screenshot of the user interface that we used for testing the

interface navigation. It shows an excerpt of a table of 5x5 cells, each consisting of a

unique letter and a radio box that could be selected. It was the users’ task to navigate

from the top-left box ―A‖ to a cell that is marked with a grey background and select

the button of this cell. This navigation task was repeated 20 times for each variant

with a fixed set of 20 different letters that were randomized on test start-up. There

was a short-cut to navigate directly from the first ―A‖ cell to the very last cell by

issuing a ―previous‖ gesture. All gestures were equipped with sound feedback to

confirm a previous or next navigation step (a clicking sound), and a different one for

the selection and confirmation gesture (figure 1b).

We tested this system with 16 persons (9 male / 7 female), most of them aged

between 20 and 29 (2x30-39/1x40-59). During the user tests sometimes gestures have

not been recognized or an error occurred. Users were not trained and just received a

short explanation and demonstration of the supported gestures. Thus they generally

used the first task in each test variant to get comfortable with the system. We removed

these first step tasks from our test data set and ended up with a total set of 259

(variant 1), 262 (variant2), and 295 (variant 3) performed tasks.

The evaluation of a standardized questionnaire that was handed out after the test,

revealed that all persons appreciated the sound support and 15 of the persons also

appreciated the visual feedback of a moving orange box that showed the current

position of the navigation in the interface (1 person was indifferent). With the first

movement the navigation prototype recorded all movements and times to proceed to

the final cell.

Fig. 11. Detail of a screenshot from the user interface for testing the gesture-based navigation.

13

Although the overall success rate (stating that the user could navigate and select

the correct cell) was similar (97%-98%) for all three tested variants, they differ in

their navigation error rate and the overall navigation speed as illustrated in table 1.

We defined five different error classes:

1. The user was able to directly move to the final cell.

2. The user was able to navigate to the target cell but missed the target cell by

one or two cells, which required the user to correct the navigation path.

3. The user missed the correct cell by 3 to 6 cells and needed to correct his

navigation to end up on the correct cell.

4. The user missed the correct cell by more than six cells or tried several times

until the user ended up selecting the correct one.

5. The user selected and confirmed the wrong cell.

As shown in table 1 with the first variant the user made less navigation errors, but

the overall average navigation time to reach the correct cell was high. For the last

variant it was the opposite: The users could benefit from a high navigation

performance but it included a high navigation error rate that required re-navigating to

end up at the correct cell.

In the questionnaire we asked the users which variant that was the easiest variant to

use for them. The majority (9 persons) preferred the second variant which was seen as

a compromise between adjusting the speed with a low error rate (4 persons preferred

the third, 2 persons the first variant). The time for the entire test was around 12

minutes for each person. Therefore we were although interested at learning which

variant was experienced as less exhausting by the users. The majority of the 16 people

(11 of them) experienced the third variant as less exhausting (4 persons marked the

second variant as less exhausting).

5. Related Work

Recent research has focused on evaluating different forms of gesture-based

interaction from a distance to control interfaces displayed on wall sized displays [6].

Cluster\ Variant 1 2 3

Navigation success without error 71,43% (187) 65,48% (170) 46,78% (138)

1-2 corrections 21,62% (56) 30,92% (81) 32,20% (95)

3-6 corrections 6,56% (17) 3,82% (10) 16,61% (49)

7 and more corrections 0,39% (1) 0,38% (1) 4,41% (13)

Success rate 97,50 % 98,57% 97,19%

Average time per step (ms) 1651 1382 1038

Table 1. Comparison of the three tested variants.

14 Sebastian Feuerstack, Mauro dos Santos Anjo, Jessica Colnago, Ednaldo Pizzolato

Several frameworks have been proposed to ease the creation of multimodal

interaction controls like the Open Interface Framework [8] or Squidy [7].

But these frameworks are limited to assemble the current multimodal control (like

e.g. combining gestures with sound or choosing between different technologies for

gesture recognition). Currently a developer is still required to connect the multimodal

control to a specific application, which still need to be performed at the source code

level. Further on, the current interaction inside the application that specifies what

happens if the user issues certain gesture in a certain state of the application is still a

programming task as well.

The model-driven development of user interfaces has been around for a long time

to tackle this issue and resulted in several connected design models that have been

summarized by the Cameleon Reference Framework [2] and by user interface

languages such as USIXML [10]. But it has been applied to develop interfaces for

pre-defined platforms only, such as to design interfaces for small screens of cell

phones, for speech interfaces or to develop television and 3D interfaces for instance.

Multimodal systems have been addressed by these approaches only to a very limited

extend [13].

State machines have been widely used in Case-Tools and are already standardized

as part of UML and the W3C multimodal framework with the SCXML standard and

therefore reduce the entry barrier for developers as various tools are already available

to design state machines.

6. Conclusion

With our approach of specifying interaction based on state machines, different forms

of interactions could be efficiently designed and generated since only the state

machines have to be changed. The mappings to describe the overall multimodal

interaction have to be changed only if more than one mode of interaction needs to be

manipulated.

To demonstrate our approach we designed three variants of navigation through an

interface by using hand gestures and postures. We demonstrated that just the

declaratively modelled start machines had to be manipulated to change the way of

interacting with our prototype on a multimodal manner.

The test results showed that people prefer a navigation variant that allows

adjustments of navigation speed. Even if people experienced a high overall success

rate, they prefer a navigation that requires less corrections of the navigation. Although

the variant that requires more correction of navigation was overall faster to perform

successfully than the variant 2 with less navigation errors, the users preferred the

variant 2. The variant 3 requires the hand to move forward and backwards to move

the cursor forward and was stated as less exhausting compared to the other two

variants.

15

References

1. J.-L.Bernardes Jr., R.Nakamura, and R.Tori. Design and implementation of a

flexible hand gesture command interface for games based on computer vision. In

Proceedings of the 2009 VIII Brazilian Symposium on Games and Digital

Entertainment, SBGAMES ’09, pages 64–73, Washington, DC, USA, 2009.

2. G.Calvary, J.Coutaz, D.Thevenin, Q.Limbourg, L.Bouillon, and J.Vanderdonckt.

A unifying reference framework for multi-target user interfaces. Interacting with

Computers, 15(3):289–308, 2003.

3. D.Duke, G.Faconti, M.Harrison, and F.Paternó. Unifying views of interactors. In

AVI ’94: Proceedings of the Workshop on Advanced Visual Interfaces, pages

143–152, New York, NY, USA, 1994. ACM, ISBN:0-89791-733-2.

4. D.J. Duke and M.D. Harrison. Abstract interaction objects. Computer Graphics

Forum, 12(3):25–36, 1993.

5. S. Feuerstack, E. Pizzolato; Building Multimodal Interfaces out of Executable,

Model-based Interactors and Mappings; HCI International 2011; 14th

International Conference on Human-Computer Interaction; J.A. Jacko (Ed.):

Human-Computer Interaction, Part I, HCII 2011, LNCS 6761, pp. 221—228.

Springer, Heidelberg (2011), 9-14 July 2011, Orlando, Florida, USA.

6. F. Fikkert. Gesture Interaction at a Distance. PhD thesis, Universiteit Twente,

Centre for Telematics and Information Technology, 2010.

7. W. A. Kaenig, R. Raedle, and H. Reiterer. Interactive design of multimodal user

interfaces - reducing technical and visual complexity. Journal on Multimodal

User Interfaces, 3(3):197–213, Feb 2010.

8. J.-Y. L Lawson, A.-A. Al-Akkad, J.Vanderdonckt, and B.Macq. An open source

workbench for prototyping multimodal interactions based on off-the-shelf

heterogeneous components. In EICS ’09: Proceedings of the 1st ACM SIGCHI

symposium on Engineering interactive computing systems, pages 245–254, New

York, NY, USA, 2009. ACM.

9. Q. Limbourg, J.Vanderdonckt, B.Michotte, L.Bouillon, and V.Lopez-Jaquero.

USIXML: A language supporting multi-path development of user interfaces. In

Remi Bastide, Philippe A. Palanque, and Joerg Roth, editors, EHCI/DS-VIS,

volume 3425 of Lecture Notes in Computer Science, pages 200–220. Springer,

2004.

10. P. Markopoulos. A compositional model for the formal specification of user

interface software. PhD thesis, Queen Mary and Westfield College, University

of London., 1997.

11. F. Paterno. A theory of user-interaction objects. Journal of Visual Languages &

Computing, 5(3):227 – 249, 1994.

12. E. B. Pizzolato, M. Santos Anjo, and G. C. Pedroso. Automatic recognition of

finger spelling for libras based on a two-layer architecture. In Proceedings of the

2010 ACM Symposium on Applied Computing, pages 969–973, 2010.

13. A.Stanciulescu, Q.Limbourg, A.Vanderdonckt, B.Michotte, and F.Montero. A

transformational approach for multimodal web user interfaces based on

USIXML. In ICMI ’05: Proceedings of the 7th International Conference on

Multimodal Interfaces, pages 259–266, New York, NY, USA, 2005. ACM

Press.

