
Motivation
Multimodal systems that support the user by a combination of speech, 
gesture and graphical-driven interaction are already part of our 
everyday life. They rely on a static, predefined multimodal interaction 
setup, where the interaction devices, paradigms and the possibilities 
of controlling their applications are predefined.

Approach
Bottom-up approach by an extensive description of abstract and concrete user 
interface interactors for graphical, voice, and gesture-driven interfaces.

=> Specification of structure and behavior.

Multimodal
Setup

Multimodal
Setup

EnvironmentModel-based User Interface Design

HTML

VoiceXML

Image 
Recognition

Swing

Wav

...

Tasks

Dialogues

Dialogues
AUI

AUI

AUI
CUI

CUI

CUI

CUI

Modeling multimodal systems that support various 
multimodal setups is an open research issue.

Challenges
1. How to model real multimodal interaction that includes fusion

and fission?
2. Have different modalities more in common than they differ?

- What is a suitable dialogue modeling abstraction?
- Can design models be executed?

3. What is an appropriate design process?
- Graceful Degradation vs. Abstract-to-Concrete

User Interface Interactors
Specification of interactors on modal-independent (abstract), and concrete 
(modal-dependent) level with state machines and class diagrams.

Element

AIO

AIC

child
0..n

parent
1

nextprev

11

Structure:AUI

AISingleChoice AIMultiChoice

AICommand

- isFocused

0..n

choosen

AIOUTAIIN

AIChoice
- maxToChoose

- maxToChoose=1

AIChoosen

AIINContinous AIINDiscrete AIOUTDiscrete

AIOUTContinous

AUI:AIO

initialized

defocused

[focus]

hidden

[present]

[defocus]

organizing

organized

[calculated]

[ready]

[suspend]

focused

aio=find(next||prev||
parent) / aio.focus

[next||prev||parent]

defocusing

[present]

AUI:AIO:presenting->isFocused

CUI:CIO:gfx

initialized

displayed

hidden

[position]

highlighted

positioning

positioned

[calculated]

[ready]

[hide]

CUI:CIO:presenting->isHighlighted

[highlight][unhighlight] unhighlighting

[up||down||left||right]

cio=find(up||down||
left||right)/cio.highlight

[position]

disabled

[disable][hide]

Interaction Resources
Flexible aggregation of components to form interaction resources that can be 
aggregated to multimodal setups. Mappings describe multimodal relations 
between interactors and interaction resources.

Related Work
The CARE Properties
Complementary denotes several modalities that convey 
complementary chunks of information.

Assignment implies that a modality is fixed in the way that the user 
has no choice in for performing a task with another modality.

Redundancy indicates that the same piece of information is conveyed 
by several modalities.

Equivalence of modalities implies that the user can perform a task 
using a modality chosen amongst a set of equivalent modalities.

Cameleon Reference Framework and UsiXML
Our work considers the user interface development abstraction levels 
of the Cameleon Framework. Different to UsiXML, which offers a 
standardized markup language for several modalities, we add a 
behavior specification of interactors and  focus on designing 
multimodal interaction.

Evaluation in E-Learning
Multimodal approaches to learning have been proven to be extremely 
effective since information introduced aurally, visually and 
kinesthetically can significantly increase the possibility of understand 
and remembering information. By a case study we want to prove that 
our approach can be applied to model a multimodal learning 
application that can be run in different multimodal setups.

C
Pointer.stopped

e=AIO.focused

Button.pressed C
E

Tw<0,3s

c=AIC.focused

Button.released
C

Tw<0,3s

E
dragging

droped(e,c)

IR:IN:Pointer

[X||Y] [t>0,3s]

IR:IN:Button

released

[press] [release]

pressed

IR:IN:Mouse Mouse

ButtonWheel Pointer

LeftButton RightButton

IR:IN:hand_gestures

nextprevious

widened

widening

wait_two

[confirm] [widen]no_hands

two_hands

[two_hands]

[one_hand]
[one_hand]

wait_one

[two_hands]

[prev] [next]

[stop]

[no_hands]

[next]
[previous]

one_hand

[no_hands]

[widen]

[narrow]
[confirm]

narrowing

narrowed

n w

[widen]

[narrow]

[narrow]

[widen]
[narrow] C

Gesture.OneHand.next

AIO.focused

Tw<0,3s

C
Gesture.TwoHands.widening

AIO.focused

T R

Tw<0,3s

Tw=0,5s

Sound.click

AIO.parent

AIO.next

Cx,y= Pointer.stopped

cio = in_pos(x,y)

Tw<0,3s

cio.highlight
TD=∞

AIO.focused CIO.highlighted

stopped

moving

Editor and Interpreter
An Eclipse-based editor enables task-based design and is currently extended to 
support assembling of abstract and concrete interactors to dialogues. An initial 
interpreter has been implemented that loads the state machines and mapping 
definitions into software agents that communicate through a tuplespace.


