

The original publication is available at

www.springerlink.com .

Building Multimodal Interfaces out of Executable, Model-based Interactors and

Mappings

Sebastian Feuerstack, Ednaldo Pizzolato

Universidade Federal de São Carlos, Departamento de Computacão,

Rod. Washington Luis, km 235 - SP, Brazil

sfeu@cs.tu-berlin.de, ednaldo@dc.ufscar.br

Future interaction will be embedded into smart environments offering the user

to choose and to combine a heterogeneous set of interaction devices and

modalities based on his preferences realizing an ubiquitous and multimodal

access. We propose a model-based runtime environment (the MINT

Framework) that describes multimodal interaction by interactors and

multimodal mappings. The interactors are modeled by using state machines and

describe user interface elements for various modalities. Mappings combine

these interactors with interaction devices and support the definition of

multimodal relations. We prove our implementation by modeling a multimodal

navigation supporting pointing and hand gestures. We additionally present the

flexibility of our approach that supports modeling of common interaction

paradigms such as drag-and-drop as well.

1 Introduction

Future interaction will be embedded into smart environments offering the user to

choose and to combine a heterogeneous set of interaction devices and modalities

based on his preferences realizing an ubiquitous and multimodal access.

Such a flexible multimodal interaction requires user interface dialogues that are

adaptive regarding the utilized modalities and their alteration. But current multimodal

interfaces are often implemented for a predefined interaction hardware setup. Like for

instance for the common mouse and keyboard setup of a computer, for a controller of

a game console that supports gesture detection, or for the control wheel with speech

feedback for navigating through the menus of a cockpit control in cars.

To tackle the complexity of designing and implementing multimodal interfaces,

recent research has been focused on three main aspects. First, by model-driven user

interface development (MDDUI) that describes a process for the tool-driven design of

multi-platform interfaces though several models. MDDUI projects, such as [1]

demonstrated basic multimodal applications. Second, executable models have been

introduced into MDDUI [2, 3]. They enable to adapt the interaction modalities to the

actual context of a user in a smart environment. Finally, the characteristics of different

modalities and their relations have been investigated in depth [4] and platforms have

been developed that support building multimodal interfaces out of components [5, 6].

To our knowledge these approaches of the first two categories support the design of

multimodal interfaces to a limited extent only. They enable modeling and adaptation

between equivalent modalities and do not address multimodal fusion. The approaches

in the third category are focusing on multimodal fusion between several modalities

but restrict their findings to a particular use case for a fixed setup of modalities (like a

cockpit for instance) or on command and control-interfaces.

In this paper we present our approach on modeling user interface dialogues with

connected executable interactors. Each interactor consists of a set of declarative

models that describe both, the structure as well as the behavior. Interactors are

connected to form dialogues to support different multimodal hardware setups by

multimodal mappings.

2 Related Work

Our work is based on the idea of combining earlier works about multimodal

interaction and model-driven development of user interfaces to enable a developer to

assemble multimodal interfaces based on pre-modeled interactors. Model-driven

development has resulted in several connected design models that have been summed

up by the Camelon Reference Framework [7] and in user interface languages such as

USIXML [8]. But MDDUI has been applied to develop interfaces for pre-defined

platforms only such as for example for XHTML+Voice browsers [1] or game

consoles. Multimodal systems have been addressed by these approaches only to a

very limited extend [1] and without addressing building interfaces out of

complementary modes. Different to these approaches our interactor-based interfaces

can be flexibly extended to new modes and media just by adding new interactors and

mappings to a running system. Our approach is inspired by the findings of the iCARE

platform [6] that supports building multimodal interaction out of components that are

connected based on the CARE properties. These properties describe the relations

between different modes, such as their complementary, redundant or equivalent

combination.

Further on, we considered earlier work that we have implemented in the MASP

platform [2] to support executing interfaces based on the designed models without the

need for a further implementation phase. Different to the MASP that currently

supports modeling equivalent multimodal relations only and is bound to the Eclipse

Modeling Framework, we rely on state machines. State machines have been widely

used in Case-Tools and are already standardized as part of UML and the W3C

multimodal framework and therefore reduce the entry barrier for developers.

Finally, different to earlier work that applied state machines for the actual design of

the interface dialogues, we use them to describe interactors. The interactor abstraction

is mature [9] and has been for instance recently used to specify HTML and Java [10].

By using interactors, the interface design can be done in the same manner as it is

actually done by UI builders to compose interfaces based on a toolkit.

3 Approach

Figure 1 illustrates the basic conceptual components of our approach as well as the

relations between the models that we use to generate multimodal interfaces. Our

approach supports the general MDDUI process that starts with a task analysis- and

design to separate user from system tasks. An abstract user interface (AUI) model is

used to specify the (modality-independent) interface elements that need to be realized

for every interaction setup. The specific aspects of each concrete modality are

captured by a concrete user interface (CUI) model. Additionally, and different to

other approaches like CAMELEON[7] and USIXML[8], we describe the capabilities

of the interaction resources (devices and modalities) in declarative models as well and

target our approach to the design of multimodal interfaces that can be adapted to

different modalities at system runtime. Further on we define mappings in a separate

model and use them to glue all the models together at runtime [2].

Each design model is referring to interactors to describe an interface. Interactors

are pre-defined components that describe the behavior of each model’s atomic

elements. We are using self-executable, reactive software agents to encapsulate

interactors and specify their behavior by state machines. In the task model design for

example, the developer assembles application and interaction task interactors that

consist of an own lifecycle at runtime (initiated, executing, stopped, inactive, and

done) like described earlier for instance in [11].

Interaction ResourcesMultimodal MappingsSynchronizations

CUI

Interaction Resources
AUI

CUI

A
B

C

A
B

C

A
B

C
C1 C2

P

C1 C2

P

C1 C2

P

Task-Model

A
B

CT2 T3

T1

>>

Multimodal Mappings

C

Synchronizations

1

1

1

1

1..*

0..*

0..*

0..* Reification Abstraction

Fig. 1. The relations between the principal models.

 a)

At design time, state machines (which are specified as declarative models)

complement the user interface markup language with a behavior specification, which

is currently missing in actual approaches like e.g. USIXML [8]. State machines are a

well-known and a straight-forward way of describing and running reactive systems.

They have been applied in several case tools that can generate source code from UML

state charts1 and will be standardized by the W3C to support speech-application

design soon2.
In the following sections we describe how multimodal applications can be

designed and implemented with our Multimodal Interaction (MINT) Framework3 and

subsequently enhanced to support different multimodal setups. As a running example

we focus on a multimodal dialogue navigation prototype. To proof our approach we

applied several common interaction patterns to evaluate if they can be implemented

with our approach. One of them, the drag-and-drop paradigm, will be presented in the

end of this paper. The MINT framework does not require starting with a particular

model. Thus, we start our example by modeling a concrete (graphical) interface and

add the AUI layer for integrating further modalities thereafter.

3.1 Modeling Navigation for Graphical Interfaces

Modeling a graphical interface requires the composition of screens by selecting

appropriate interactors like buttons, combo-boxes or menus for instance, which we

call Concrete Interaction Objects (CIO). Our basic interactor for graphical concrete

interface elements is depicted by the state machine in figure 2a.

1 OMG Unified Modeling Language (OMG UML), Superstructure Version

2.2".http://www.omg.org/spec/UML/2.2/Superstructure/PDF/, last accessed 20/12/2010
2 State Chart XML (SCXML): W3C Working Draft 16 December

2010http://www.w3.org/TR/scxml/, last accessed 20/12/2010
3 The MINT platform is available as open source at http://www.multi-access.de, last accessed

20/12/10

AUI:AIO

initialized

defocused

focus

hidden

organize

defocus

organized

present

suspend

focused

aio=find(next||prev||

parent) / aio.focus

next||prev||parent

defocusing

organize

presenting

CUI:CIO:gfx

initialized

displayed

hidden

position

highlighted

positioned

present

hide

CUI:CIO:presenting->isHighlighted

highlight
unhighlight unhighlighting

up||down||left||right

/cio=find(up||down||

 left||right);cio.highlight

position

disabled

disable
hide

Fig. 2. a) Graphical CIO state machine. b) AIO state machine.

b)

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.w3.org/TR/scxml/
http://www.multi-access.de/

We support inheritance for interactor design and therefore the CIO interactor serves

as the basis for all other, more specific interactors of a graphical interface. The basic

life-cycle consists of a positioning, presentation, hidden and disabled phase. In the

positioning phase, each CIO interactor calculates its absolute screen coordinates by

identifying its neighbors that can be reached by interface navigation. During the

presentation phase the interactor is part of the active user interface (UI) and reacts on

navigation events. The user can therefore navigate to the interactor that gets then

“highlighted”.

After the first CIO interactor has been highlighted, up, down, left, and right events

can be sent to an interactor that is highlighted to navigate to the one. Each of those

events “unhighlight” the receiving interactor, let it search the event’s target interactor

to that a “highlight” event will be sent.

For navigation several modalities can be considered as appropriate. The most basic

one is a mouse that we design as a composed interaction resource (IR), which consists

of a set of more basic interactors: a wheel, two buttons and a pointing interactor like

shown in figure 3. The behavior part of the mouse could be defined straight-forward

by two state machines characterizing the pointer and a button. The pointer could be in

the states “moving” or “stopped”. While the pointer is in the “moving” state it

communicates its x and y coordinates. The pointer is considered to be stopped if there

is no movement for a particular time span. In the same manner, a mouse button can be

described by a state machine to communicate its’ two states: “pressed” and

“released”.

3.2 Mapping Specification for UI Element highlighting while pointing

Like depicted in figure 1 we use mappings as the glue to combine the AUI, CUI and

interaction resource specifications. The mappings rely on the features of the state

machines that can receive and process events and have an observable state. Thus, each

mapping can observe state changes and send events.

IR:IN:Pointer

stopped

[move] [stop]

moving

IR:IN:Button

released

[press] [release]

pressed

IR:IN:WheelIR:IN:Mouse IR:IN:Mouse

Mouse

ButtonWheel Pointer

LeftButton RightButton

- x,y- z

Fig. 3. The class diagram and state chart of a mouse.

Figure 4a shows the principal mapping we are using to change the highlighted

graphical UI elements based on the actual pointing position. A mapping consists of

Boxes with rounded and sharp edges. The former one define reactions on state

changes of an interactor, the latter ones define system function calls or events. The

mapping of figure 4a observes the state of the Pointer IR and gets triggered as soon as

the pointer enters the state “stopped”. The “C” specifies a complementary mapping,

which requires all inputs of the C to be resolved for the mapping to start. The second

mapping “assigns” (A) the observation of a moving pointer to an event that ensures

that no CIO is highlighted during pointer movements.

Therefore, as soon as the pointer has been stopped and coordinates of the stopped

pointer could be retrieved, the findCIO function is called to check if there has been a

CIO positioned at these coordinates and if it is currently not highlighted. The

complementary mapping only executes if all three conditions can be evaluated and in

our example fires a “highlight” event to the corresponding CIO.

3.3 Connecting further Modalities

To add further, no-graphical media like sound or modes like gestures to control the

interface we require the AUI model to keep them synchronized. Figure 2b depicts the

basic abstract interactor object (AIO) that serves as a base for all other abstract

interactors. Whereas it is quite similar to the basic CIO of figure 2a its semantics are

different and independent of any modes or modalities. Thus, the AIO state machine

processes the ordering of elements for a basic navigation. It supports browsing

through all elements using “previous”, “next” and “parent” commands (in contrast to

the graphical-oriented navigation that supports directions like “up”/”down” based on

their calculated coordinates). Further on, the highlighting feature of the CIO becomes

a “focus” in the AIO describing that the actual interactor is in the focus of the user.

Now, both interactors can be synchronized using the two bi-directional mappings of

figure 4b.

Now that we are having the navigation synchronized between the graphical CIO

and the AIO we have two options to connect further modes and media. First, we can

attach them to the AUI interactors so that we can benefit from the already existing

synchronizations between AUI and CUI. Second, we could attach them to another

CUI and add further synchronizations between the new CUI model and the AUI. The

mappings shown by figure 5a add gesture-based navigation and sound media and

implement the former case and connect directly to the AUI. They require a gesture

control interactor that supports two modes: When using two hands, like depicted in

C cio.highlight

x,y=Pointer.stopped

cio=CUI.findCIO(x,y)

cio.unhighlighted

Pointer.moving CIO.all.unhighlightA

Fig. 4. a) Basic pointer mappings. b) CUI with AUI synchronization.

CIO.highlighted

CIO.unhighlighted AIO.defocus

AIO.focus a)
 a)

b)

figure 5b, the distance between the hands is measured and interpreted as “narrowing”

or “widening”. With only one hand detected, the interactor distinguishes two postures:

one for issuing “next” and another one for issuing a “previous” command.

The first mapping of figure 5a waits for the next posture to appear while an

interactor is in the state “focused”. If this is the case the mapping gets executed and

sends to events: A “next” event to the AIO (aio) that is in the focus of the user and a

“click” event to a sound interactor that can generate a “click” sound. Both events are

specified as redundant (R), which requires both by processed successfully.

Alternatively they could be marked as equivalent (E), which requires only at least one

of them (at least the aio.next event) to be processed successfully.

After both events have been fired the mapping waits (T) for half a second to re-

initiate itself. Thus, if the user remains his hand in the “next” posture, the mapping

gets fired every half second. The second mapping of figure 5a to widen the focus to

the parent interactor works in the same manner but does not require a timeout. A

threshold inside the gesture interactor defines at which sensitivity the “widening”

event is fired (this depends on the camera resolution and the users ability to keep the

distance between their hands stable).

3.4 Mappings to specify Interaction Paradigms

Our approach of describing interactions of composed interactors based on state

machines and mappings turned out to be very flexible. Not only multimodal relations

can be addressed by the mappings but also interaction paradigms like a “double-click”

or “drag-and-drop” as well. Figure 6 depicts a mapping that specifies the drag-and-

drop functionality for elements (AIChoiceElement) of an abstract list (AIChoice) on

the AUI model level that is bound to the left button of a mouse. The AISingleChoice

interactor (figure 7a) introduces a parallel super state to the presenting state of the

AIO interactor. Additionally to the capability of gaining the user’s focus, this super

state describes the ability of a list to receive list elements that are dropped to the list.

C
aio=AIO.focused

Tw<0,3s

C
aio=AIO.focused

T R

Tw<0,3s Tw=0,5s

Sound.zoom

aio.parent

aio.next

Gesture.TwoHands.widening

Gesture.OneHand.next
R

Sound.click
T

Tw=0,5s

Fig. 5. a) Mappings to connect sound media and a gesture-driven control to the interface.

 b) Zoom gesture for widening and narrowing the user’s focus.

C
dst=AIChoice.focused

C

Tw<0,3s

aois.drag
dst.drop(aios)

src=AIChoose.focused

Tw<0,3s
LeftButton.pressed

aios=src.childs.all(chosen) LeftButton.released

Fig. 6. Basic Drag-and-Drop mapping on the AUI model abstraction level.

b)
 a)

Like shown in figure 7b, the dragging feature is not part of the list interactor but

implemented by the interactor that describes an individual list element’s behavior.

There, we introduce a parallel super state as well that adds the capability of an

element do be chosen and dragged. An element can only be chosen, if it is in the

user’s focus and it takes care, that all other list elements get “unchosen” if they are

part of a single choice list. Given these interactor specifications, the drag-and-drop

mapping of figure 6 is easy to understand: It waits for the left mouse button to be

pressed and a list of AIChoiceElements that are in the state “chosen” to issue a “drag”

event to them. As soon as the button is released it fires the drop event to the list that is

currently in the user’s focus.

Acknowledgments. The author is grateful to the Deutsche Forschungsgemeinschaft

(DFG) for the financial support of his work.

[in(focused)]

/aio=AIChoiceElement.all(dragging);

add(aio) and aio.drop

[in:focused]

choose

chosen

unchosen

[in(focused)]

drag

dragging

unchoose drop

H

choosing

/ aios=find(parent.childs.chosen);

aios.all.unchoose

AUI:AIC:AISingleChoice:presenting

AUI:AIO:AIC:presenting

listing dropped

/ self.unfocus;

AIChoiceElement.focus

dropping

[in(focused) drop

AUI:AIChoiceElement:presenting

AUI:AIChoiceElement:

 AISingleChoiceElement:presenting

Fig. 7. a) AISingleChoice, the container for all SingleChoiceElements.

b) SingleChoiceElement AIO state machine.

b) a)

References

1. Adrian Stanciulescu, Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, and

Francisco Montero. A transformational approach for multimodal web user interfaces based

on usixml. In ICMI ’05: Proceedings of the 7th International Conference on Multimodal

Interfaces, pages 259–266, New York, NY, USA, 2005. ACM Press.

2. Marco Blumendorf, Grzegorz Lehmann, Sebastian Feuerstack, and Sahin Albayrak.

Executable models for human-computer interaction. In T. C. Nicholas Graham and Philippe

Palanque, editors, Interactive Systems. Design, Specification, and Verification: 15th

International Workshop, DSV-IS 2008 Kingston, Canada, July 16-18, 2008 Revised Papers,

pages 238–251, Berlin, Heidelberg, 2008. Springer-Verlag.

3. Alexandre Demeure, Gaelle Calvary, and Karin Coninx. Comet(s), a software architecture

style and an interactors toolkit for plastic user interfaces. pages 225–237, 2008. Design,

Specification, and Verification, 15th International Workshop, DSV-IS 2008, T.C.N.

Graham & P. Palanque (Eds), Lecture Notes in Computer Science 5136, Springer Berlin /

Heidelberg, Kingston, Canada, July 16-18, 2008, pp 225-237.

4. Niels Ole Bernsen. Multimodality theory. In Dimitrios Tzovaras, editor, Multimodal User

Interfaces, Signals and Communication Technology, pages 5–29. Springer Berlin

Heidelberg, 2008. 10.1007/978-3-540-78345-9_2.

5. Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean Vanderdonckt, and Benoit Macq.

An open source workbench for prototyping multimodal interactions based on off-the-shelf

heterogeneous components. In EICS ’09: Proceedings of the 1st ACM SIGCHI symposium

on Engineering interactive computing systems, pages 245–254, New York, NY, USA,

2009. ACM.

6. Bouchet, J., Nigay, L., & Ganille, T. (2005). The ICARE Component-Based Approach for

Multimodal Input Interaction: Application to real-time military aircraft cockpits. In

Conference Proceedings of HCI International 2005, the 11th International Conference on

Human-Computer Interaction, Las Vegas, Nevada, USA, July 2005. Lawrence Erlbaum

Associates.

7. Gaelle Calvary, Joelle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon, and

Jean Vanderdonckt. A unifying reference framework for multi-target user interfaces.

Interacting with Computers, 15(3):289–308, 2003.

8. Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and Victor

Lopez-Jaquero. USIXML: A language supporting multi-path development of user

interfaces. In Remi Bastide, Philippe A. Palanque, and Joerg Roth, editors, EHCI/DS-VIS,

volume 3425 of Lecture Notes in Computer Science, pages 200–220. Springer, 2004.

9. David Duke, Giorgio Faconti, Michael Harrison, and Fabio Paternó. Unifying views of

interactors. In AVI ’94: Proceedings of the Workshop on Advanced Visual Interfaces, pages

143–152, New York, NY, USA, 1994. ACM, ISBN:0-89791-733-2.

10. Hallvard Traetteberg. Dialog modelling with interactors and UML Statecharts - A hybrid

approach,. In Proceedings of 10th International Workshop, DSV-IS 2003, Funchal,

Madeira Island, Portugal. Lecture Notes in Computer Science, Springer-Verlag, 2003,

pages 346–361, 2003.

11. Birgit Bomsdorf, The WebTaskModel approach to web process modelling, In Proceedings

of the 6th international conference on Task models and diagrams for user interface design

(TAMODIA 2007), November 07-09, 2007, Toulouse, France

