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Future interaction will be embedded into smart environments offering the user 

to choose and to combine a heterogeneous set of interaction devices and 

modalities based on his preferences realizing an ubiquitous and multimodal 

access. We propose a model-based runtime environment (the MINT 

Framework) that describes multimodal interaction by interactors and 

multimodal mappings. The interactors are modeled by using state machines and 

describe user interface elements for various modalities. Mappings combine 

these interactors with interaction devices and support the definition of 

multimodal relations. We prove our implementation by modeling a multimodal 

navigation supporting pointing and hand gestures. We additionally present the 

flexibility of our approach that supports modeling of common interaction 

paradigms such as drag-and-drop as well. 

1   Introduction 

Future interaction will be embedded into smart environments offering the user to 

choose and to combine a heterogeneous set of interaction devices and modalities 

based on his preferences realizing an ubiquitous and multimodal access.  

Such a flexible multimodal interaction requires user interface dialogues that are 

adaptive regarding the utilized modalities and their alteration. But current multimodal 

interfaces are often implemented for a predefined interaction hardware setup. Like for 

instance for the common mouse and keyboard setup of a computer, for a controller of 

a game console that supports gesture detection, or for the control wheel with speech 

feedback for navigating through the menus of a cockpit control in cars. 

To tackle the complexity of designing and implementing multimodal interfaces, 

recent research has been focused on three main aspects. First, by model-driven user 

interface development (MDDUI) that describes a process for the tool-driven design of 

multi-platform interfaces though several models. MDDUI projects, such as [1] 

demonstrated basic multimodal applications. Second, executable models have been 

introduced into MDDUI [2, 3]. They enable to adapt the interaction modalities to the 

actual context of a user in a smart environment. Finally, the characteristics of different 

modalities and their relations have been investigated in depth [4] and platforms have 

been developed that support building multimodal interfaces out of components [5, 6]. 

To our knowledge these approaches of the first two categories support the design of 

multimodal interfaces to a limited extent only. They enable modeling and adaptation 

between equivalent modalities and do not address multimodal fusion. The approaches 

in the third category are focusing on multimodal fusion between several modalities 



but restrict their findings to a particular use case for a fixed setup of modalities (like a 

cockpit for instance) or on command and control-interfaces. 

In this paper we present our approach on modeling user interface dialogues with 

connected executable interactors. Each interactor consists of a set of declarative 

models that describe both, the structure as well as the behavior. Interactors are 

connected to form dialogues to support different multimodal hardware setups by 

multimodal mappings. 

2   Related Work 

Our work is based on the idea of combining earlier works about multimodal 

interaction and model-driven development of user interfaces to enable a developer to 

assemble multimodal interfaces based on pre-modeled interactors. Model-driven 

development has resulted in several connected design models that have been summed 

up by the Camelon Reference Framework [7] and in user interface languages such as 

USIXML [8]. But MDDUI has been applied to develop interfaces for pre-defined 

platforms only such as for example for XHTML+Voice browsers [1] or game 

consoles. Multimodal systems have been addressed by these approaches only to a 

very limited extend [1] and without addressing building interfaces out of 

complementary modes. Different to these approaches our interactor-based interfaces 

can be flexibly extended to new modes and media just by adding new interactors and 

mappings to a running system. Our approach is inspired by the findings of the iCARE 

platform [6] that supports building multimodal interaction out of components that are 

connected based on the CARE properties. These properties describe the relations 

between different modes, such as their complementary, redundant or equivalent 

combination. 

Further on, we considered earlier work that we have implemented in the MASP 

platform [2] to support executing interfaces based on the designed models without the 

need for a further implementation phase. Different to the MASP that currently 

supports modeling equivalent multimodal relations only and is bound to the Eclipse 

Modeling Framework, we rely on state machines. State machines have been widely 

used in Case-Tools and are already standardized as part of UML and the W3C 

multimodal framework and therefore reduce the entry barrier for developers.  

Finally, different to earlier work that applied state machines for the actual design of 

the interface dialogues, we use them to describe interactors. The interactor abstraction 

is mature [9] and has been for instance recently used to specify HTML and Java [10]. 

By using interactors, the interface design can be done in the same manner as it is 

actually done by UI builders to compose interfaces based on a toolkit. 

 



3   Approach 

Figure 1 illustrates the basic conceptual components of our approach as well as the 

relations between the models that we use to generate multimodal interfaces. Our 

approach supports the general MDDUI process that starts with a task analysis- and 

design to separate user from system tasks. An abstract user interface (AUI) model is 

used to specify the (modality-independent) interface elements that need to be realized 

for every interaction setup. The specific aspects of each concrete modality are 

captured by a concrete user interface (CUI) model. Additionally, and different to 

other approaches like CAMELEON[7] and USIXML[8], we describe the capabilities 

of the interaction resources (devices and modalities) in declarative models as well and 

target our approach to the design of multimodal interfaces that can be adapted to 

different modalities at system runtime. Further on we define mappings in a separate 

model and use them to glue all the models together at runtime [2]. 

Each design model is referring to interactors to describe an interface. Interactors 

are pre-defined components that describe the behavior of each model’s atomic 

elements. We are using self-executable, reactive software agents to encapsulate 

interactors and specify their behavior by state machines. In the task model design for 

example, the developer assembles application and interaction task interactors that 

consist of an own lifecycle at runtime (initiated, executing, stopped, inactive, and 

done) like described earlier for instance in [11]. 
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Fig. 1. The relations between the principal models. 
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At design time, state machines (which are specified as declarative models) 

complement the user interface markup language with a behavior specification, which 

is currently missing in actual approaches like e.g. USIXML [8]. State machines are a 

well-known and a straight-forward way of describing and running reactive systems. 

They have been applied in several case tools that can generate source code from UML 

state charts1 and will be standardized by the W3C to support speech-application 

design soon2. 
In the following sections we describe how multimodal applications can be 

designed and implemented with our Multimodal Interaction (MINT) Framework3 and 

subsequently enhanced to support different multimodal setups. As a running example 

we focus on a multimodal dialogue navigation prototype. To proof our approach we 

applied several common interaction patterns to evaluate if they can be implemented 

with our approach. One of them, the drag-and-drop paradigm, will be presented in the 

end of this paper. The MINT framework does not require starting with a particular 

model. Thus, we start our example by modeling a concrete (graphical) interface and 

add the AUI layer for integrating further modalities thereafter. 

3.1   Modeling Navigation for Graphical Interfaces 

Modeling a graphical interface requires the composition of screens by selecting 

appropriate interactors like buttons, combo-boxes or menus for instance, which we 

call Concrete Interaction Objects (CIO). Our basic interactor for graphical concrete 

interface elements is depicted by the state machine in figure 2a. 

                                                           
1 OMG Unified Modeling Language (OMG UML), Superstructure Version 

2.2".http://www.omg.org/spec/UML/2.2/Superstructure/PDF/, last accessed 20/12/2010 
2 State Chart XML (SCXML): W3C Working Draft 16 December 

2010http://www.w3.org/TR/scxml/, last accessed 20/12/2010 
3 The MINT platform is available as open source at http://www.multi-access.de, last accessed 

20/12/10 
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Fig. 2. a) Graphical CIO state machine. b) AIO state machine. 
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We support inheritance for interactor design and therefore the CIO interactor serves 

as the basis for all other, more specific interactors of a graphical interface. The basic 

life-cycle consists of a positioning, presentation, hidden and disabled phase. In the 

positioning phase, each CIO interactor calculates its absolute screen coordinates by 

identifying its neighbors that can be reached by interface navigation. During the 

presentation phase the interactor is part of the active user interface (UI) and reacts on 

navigation events. The user can therefore navigate to the interactor that gets then 

“highlighted”. 

After the first CIO interactor has been highlighted, up, down, left, and right events 

can be sent to an interactor that is highlighted to navigate to the one. Each of those 

events “unhighlight” the receiving interactor, let it search the event’s target interactor 

to that a “highlight” event will be sent. 

For navigation several modalities can be considered as appropriate. The most basic 

one is a mouse that we design as a composed interaction resource (IR), which consists 

of a set of more basic interactors: a wheel, two buttons and a pointing interactor like 

shown in figure 3. The behavior part of the mouse could be defined straight-forward 

by two state machines characterizing the pointer and a button. The pointer could be in 

the states “moving” or “stopped”. While the pointer is in the “moving” state it 

communicates its x and y coordinates. The pointer is considered to be stopped if there 

is no movement for a particular time span. In the same manner, a mouse button can be 

described by a state machine to communicate its’ two states: “pressed” and 

“released”. 

 

3.2   Mapping Specification for UI Element highlighting while pointing  

Like depicted in figure 1 we use mappings as the glue to combine the AUI, CUI and 

interaction resource specifications. The mappings rely on the features of the state 

machines that can receive and process events and have an observable state. Thus, each 

mapping can observe state changes and send events.  

IR:IN:Pointer

stopped

[move] [stop]

moving

IR:IN:Button

released

[press] [release]

pressed

IR:IN:WheelIR:IN:Mouse IR:IN:Mouse

Mouse

ButtonWheel Pointer

LeftButton RightButton

- x,y- z

 

Fig. 3. The class diagram and state chart of a mouse. 



Figure 4a shows the principal mapping we are using to change the highlighted 

graphical UI elements based on the actual pointing position. A mapping consists of 

Boxes with rounded and sharp edges. The former one define reactions on state 

changes of an interactor, the latter ones define system function calls or events. The 

mapping of figure 4a observes the state of the Pointer IR and gets triggered as soon as 

the pointer enters the state “stopped”. The “C” specifies a complementary mapping, 

which requires all inputs of the C to be resolved for the mapping to start. The second 

mapping “assigns” (A) the observation of a moving pointer to an event that ensures 

that no CIO is highlighted during pointer movements.  

Therefore, as soon as the pointer has been stopped and coordinates of the stopped 

pointer could be retrieved, the findCIO function is called to check if there has been a 

CIO positioned at these coordinates and if it is currently not highlighted. The 

complementary mapping only executes if all three conditions can be evaluated and in 

our example fires a “highlight” event to the corresponding CIO. 

3.3   Connecting further Modalities  

To add further, no-graphical media like sound or modes like gestures to control the 

interface we require the AUI model to keep them synchronized. Figure 2b depicts the 

basic abstract interactor object (AIO) that serves as a base for all other abstract 

interactors. Whereas it is quite similar to the basic CIO of figure 2a its semantics are 

different and independent of any modes or modalities. Thus, the AIO state machine 

processes the ordering of elements for a basic navigation. It supports browsing 

through all elements using “previous”, “next” and “parent” commands (in contrast to 

the graphical-oriented navigation that supports directions like “up”/”down” based on 

their calculated coordinates). Further on, the highlighting feature of the CIO becomes 

a “focus” in the AIO describing that the actual interactor is in the focus of the user. 

Now, both interactors can be synchronized using the two bi-directional mappings of 

figure 4b. 

Now that we are having the navigation synchronized between the graphical CIO 

and the AIO we have two options to connect further modes and media. First, we can 

attach them to the AUI interactors so that we can benefit from the already existing 

synchronizations between AUI and CUI. Second, we could attach them to another 

CUI and add further synchronizations between the new CUI model and the AUI. The 

mappings shown by figure 5a add gesture-based navigation and sound media and 

implement the former case and connect directly to the AUI. They require a gesture 

control interactor that supports two modes: When using two hands, like depicted in 
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Fig. 4. a) Basic pointer mappings. b) CUI with AUI synchronization. 
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figure 5b, the distance between the hands is measured and interpreted as “narrowing” 

or “widening”. With only one hand detected, the interactor distinguishes two postures: 

one for issuing “next” and another one for issuing a “previous” command. 

The first mapping of figure 5a waits for the next posture to appear while an 

interactor is in the state “focused”. If this is the case the mapping gets executed and 

sends to events: A “next” event to the AIO (aio) that is in the focus of the user and a 

“click” event to a sound interactor that can generate a “click” sound. Both events are 

specified as redundant (R), which requires both by processed successfully. 

Alternatively they could be marked as equivalent (E), which requires only at least one 

of them (at least the aio.next event) to be processed successfully.  

After both events have been fired the mapping waits (T) for half a second to re-

initiate itself. Thus, if the user remains his hand in the “next” posture, the mapping 

gets fired every half second. The second mapping of figure 5a to widen the focus to 

the parent interactor works in the same manner but does not require a timeout. A 

threshold inside the gesture interactor defines at which sensitivity the “widening” 

event is fired (this depends on the camera resolution and the users ability to keep the 

distance between their hands stable). 

3.4   Mappings to specify Interaction Paradigms 

Our approach of describing interactions of composed interactors based on state 

machines and mappings turned out to be very flexible. Not only multimodal relations 

can be addressed by the mappings but also interaction paradigms like a “double-click” 

or “drag-and-drop” as well. Figure 6 depicts a mapping that specifies the drag-and-

drop functionality for elements (AIChoiceElement) of an abstract list (AIChoice) on 

the AUI model level that is bound to the left button of a mouse. The AISingleChoice 

interactor (figure 7a) introduces a parallel super state to the presenting state of the 

AIO interactor. Additionally to the capability of gaining the user’s focus, this super 

state describes the ability of a list to receive list elements that are dropped to the list.  
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Fig. 5. a) Mappings to connect sound media and a gesture-driven control to the interface. 

            b) Zoom gesture for widening and narrowing the user’s focus. 
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Fig. 6. Basic Drag-and-Drop mapping on the AUI model abstraction level. 
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Like shown in figure 7b, the dragging feature is not part of the list interactor but 

implemented by the interactor that describes an individual list element’s behavior. 

There, we introduce a parallel super state as well that adds the capability of an 

element do be chosen and dragged. An element can only be chosen, if it is in the 

user’s focus and it takes care, that all other list elements get “unchosen” if they are 

part of a single choice list. Given these interactor specifications, the drag-and-drop 

mapping of figure 6 is easy to understand: It waits for the left mouse button to be 

pressed and a list of AIChoiceElements that are in the state “chosen” to issue a “drag” 

event to them. As soon as the button is released it fires the drop event to the list that is 

currently in the user’s focus. 
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