
©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Model-based Design of Multimodal Interaction for
Augmented Reality Web Applications

Sebastian Feuerstack* Állan C. M. de Oliveira+ Mauro dos Santos Anjo+ Regina B.Araujo+ Ednaldo B. Pizzolato+
*OFFIS – Institute for Information Technology, Oldenburg, Germany; e-mail: feuerstack@offis.de

+Universidade Federal de São Carlos, São Carlos, Brazil; e-mail: {allan_oliveira, mauro_anjo, regina, ednaldo@dc.ufscar.br}

Abstract
Despite the increasing use of Augmented Reality (AR) in many
different application areas, implementation support is limited and
still driven by development at source-code level. Although efforts
have been made to overcome these limitations, there is a clear gap
between authoring environments and source code level framework
approaches for creating AR interfaces for the web with
multimodal control. Model-based design for interaction can offer
support to fill this gap between authoring environments and
frameworks. However, to the best of our knowledge, a declarative
and model-driven design (MDD) has not yet been applied to
model AR interfaces for a wide spectrum of modes. Thus, this
paper presents an extension of the model-driven design to cope
with interactors, whose novelty lies on the introduction of a
modeling approach targeted at AR developers and designers in
their task to design new forms of interactions that can be later used
in authoring environments. To validate our approach, we
demonstrate how a reality spanning Drag-and-Drop interaction can
be modeled for an online furniture shop. And we implemented a
gesture based control to show how new control modes can be
added to an existing MDD-based design to extend the interaction
capabilities.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces - Input devices and strategies, Interaction styles,
Prototyping; D.2.2 [Software Engineering]: Design Tools and
Techniques – User Interfaces.

Keywords: Augmented Reality, Model-based User Interface
Design, Web Interfaces, Multimodal Interaction, Human
Computer Interaction.

1 Introduction

Augmented reality (AR) promises to enhance the real, physical
world as we see it with additional information. Thus, AR has been
increasingly applied across different application areas, from
military to education, from entertainment to advertising, and many
more. Recent research activities are targeting on evolving
standards to support authoring, distribution and consumption of
AR content [Hill et al. 2010b]. However, the support for
implementing AR applications is still limited - it occurs typically
either at source code level, by offering re-usable basic components
for marker detection, or at AR scene rendering, by frameworks,
such as Junaio, and libraries, such as ARToolkit [Kato et al. 1999].

End user support to AR development can also be based on pre-
defined widgets, such as BuildAR [BuildAR. 2015] and
KHARMA [Hill et al. 2010a] that relies on HTML.

There is still a gap between a very low level support on the source
code level, and end user authoring environments that limit the
users` possibilities to create new interfaces to the widgets and
components that have been made available in the environment.
New features can only be introduced at the source code level of
the tool or the framework and require extensive knowledge about
their internal structures. Further on, the overarching principle of
most of the available tools and frameworks is that they offer
components or widgets as black-boxes that could be glued
together either on the source code level or by “drawing lines” to
connect their public interfaces. More complex mechanisms of
component combination to create multimodal interfaces are not
supported, such as the ones that require explicit timings to support
the fusion of data from different modes. Also, the explicit design
of interaction techniques, such as a drag-and-drop, requires a tight
connection between the components. Moreover, processing their
internals can only be done at source code level.

The model-based design (MBD) of interaction can offer support to
fill this gap between authoring environments and frameworks
(components can be connected on the source code level). By
replacing source code with models, MBD introduces an abstract
layer that eases the understanding and the design of interactions.
Moreover, costs and time can be reduced by offering structured
processes that enable the design of general (abstract) ways of
interaction with the user and systematically derive more specific
interfaces for different platforms.

In the last two decades the model-driven development of user
interfaces (MDDUI) has been successfully applied to the design of
multi-platform user interfaces and has been proved to generate, for
instance, voice [Stanciulescu et al. 2005], web [Berti et al. 2004]
and 3D interfaces [Gonzalez-Calleros et al. 2009]. But, to the best
of our knowledge, it has not yet been considered for AR
application development.

In this paper we propose the model-driven design of interactors to
bridge the gap between authoring environments and source code
level frameworks approaches for creating AR interfaces. The
novelty of our solution lies on the introduction of a modelling
approach based on state charts, to abstract from the code level.

New interaction modes can be easily added and changed by
manipulating the declarative models instead of introducing
changes at the code level. This is demonstrated by adding a hand
gesture and posture control as well as sound feedback to our
prototype.

This paper is structured as follows: The next section reviews the
related work. Thereafter we introduce our approach for the model-
based design of mixed-reality interaction. Then we present an
exemplary application, an online furniture shop, that we use in the

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted

here for your personal use. Not for redistribution. The definitive version was

published in Web3D '15 Proceedings of the 20th International Conference on 3D

Web Technology, Pages 259-267, http://dx.doi.org/10.1145/2775292.2775293.

http://dx.doi.org/10.1145/2775292.2775293

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

following section to explain our approach in detail. We present
initial tool support for designing new interactors. Experienced
problems and future work are described in pre-final section,
followed by our final comments and conclusions.

2 Related Work

There are various approaches to support the creation of user
interfaces. They can be distinguished by their targeted audience:
authoring environments are targeted to high level or end-user
development and offer a set of predefined widgets or components
that can be assembled by using a tool; One can say that authoring
enables a developer to visually develop applications with a tool
based on a set of pre-defined components by selecting and
connecting components.

Frameworks, libraries or toolkits focus on developing support and
organizing a set of components that can be connected and re-used
within a programming language. Figure 1 illustrates the different
levels of abstractions of current tools and frameworks for AR and
Multimodal interface development from the source code level up
to end-user authoring tools.

On the lowest abstraction level, libraries, toolkits and frameworks
assist developers to create their applications. They offer a set of
components that can be re-used in a certain programming
language. Common components for AR applications are features
like marker tracking, displaying the video output and rendering 3D
interfaces or hardware abstractions by drivers e.g. to access a
head-mounted display or to access proprietary software like a
speech recognition system. Examples include Studierstube
[Schmalstieg et al. 2002] or AR/FlarToolkit [Kato et al. 1999],
which offer components that can be re-used in C++ or Flash
respectively.

On a higher abstraction level, model-based approaches abstract
from a concrete programming language and focus on describing
the interaction. The basic idea of model-based approaches is to
reduce complexity (by the abstraction from the source code view)
but still offering enough semantics to enable code generation or
direct execution of the design models to form the interface.

Among some interesting approaches, we highlight Chasm
[Wingrave et al. 2009]. It is a comprehensive approach to
modeling 3D user interfaces based on Concept-Oriented Design

(COD). With Chasm, components can be designed and directly
executed based on the tiered user interface description language.
One of the advantages of this approach is it`s consideration of the
practitioner`s side enabling to add a textual description of the
desired behavior of components as part of the language. Our
approach shares the general idea of multi-tier approach like Chasm,
as we support high level and low level abstractions.

Further on, we share the concept of using states, events, transitions
and actions for modeling. However, Chasm focus on 3D user
interface development for which most of its case studies have been
done so far, whereas our approach concentrates on the design and
execution of multimodal interfaces (which results in the
multimodal mapping definition to design the connection between
different modes and media as we will describe in the next section).

Another platform worth mentioning is iCARE [Bouchet et al.
2005]. It supports building multimodal interaction out of
components based on the CARE properties. These properties
describe the relations between different modes, such as their
complementary, redundant or equivalent combination and are
inspired by the findings of multimodal theory [Bernsen 2008].

The Morgan framework [Broll et al. 2005], uses a visual tool for
modeling interfaces and interactions by assembling interactions
and behaviors of objects from pre-defined components. Recent
work on this framework included the identification of mechanisms
for supporting reusability of interactions and behaviors by using
concepts like instantiation, templates, modules and inheritance.
Morgan, in this way, can combine modeling and authoring
features.

DART [MacIntyre et al. 2004] is an example of AR authoring that
is built upon Adobe Director and supports the assembly of pre-
determined behaviors defined in a scripting language. Another tool
is APRIL [Ledermann and Schmalstieg 2005], for creating AR
presentations based on an XML language. With APRIL it is
possible to define hardware, content, temporal structure, behaviors
and interactions. The Open Interface Framework [Lawson et al.
2009] supports prototyping of multimodal interactions out of
components that can be assembled with the help of an authoring
environment. A similar approach to prototype new interactions by
connecting sensing with output devices has been proposed by the
iStuff project [Ballagas et al. 2007].

Finally, on the highest level of abstraction, tools for end-user
authoring have been proposed to create AR applications without
programming like illustrated by figure 1. One commercial tool is
BuildAR [BuildAR. 2015] for instance, that supports creation of
AR applications by end-users. KHARMA [Hill et al. 2010a]
implements a similar approach, but requires basic web
programming knowledge to be used.

Authoring environments and frameworks offer various
components to create a user interface, but the implementation of
new components or the extension of existing ones is tedious.
Often, it has to happen on the source code level using the specific
programming language of the tool. It also requires in-depth
knowledge about the organizational structure of the framework (to
consistently include changes or additions). Documentation for
these approaches typically focuses on the API. The overall
structures as well as the components’ descriptions of their internal
structures are often handled as second-class citizens´ tasks.

This contradicts current advances in the interaction design for
multimodal and augmented reality applications. New forms of
interactions, such as different forms of Drag-and-Drop are
continuously proposed and evaluated. For instance Rekimoto’s

Fig. 1. Abstraction level of tools and frameworks for the

development of AR and Multimodal interfaces

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

pick-and-drop [Rekimoto 1997], which is grabbing an object in
one display and putting it in another, or Rekimoto and Saitoh
hyperdragging [Rekimoto and Saitoh 1999], which is dragging 2d
objects through displays. A tangible drag-and-drop to configure
music streaming to different devices is proposed in [Hopmann
et al. 2011]. But these kinds of techniques are complex to add to
existing AR toolkits. This is one reason for the great variety of AR
toolkits and authoring environment. Another one is the diversity of
programming. The variety of VR toolkits and the still missing
common API of them has been recently discussed and identified
as a limiting factor for the specification of interoperable 3D
interaction techniques(3DIT) [Ray and Bowman 2007].

Therefore, an interoperating layer has been proposed to make
3DITs independent from the underlying VRToolkit layer, in order
to encourage reusability [Ray and Bowman 2007]. But this
approach is focused on the source code-level by standardized
callback API and black-boxed components that can be configured
based on XML descriptions.

To the best of our knowledge an approach that bridges the gap
between source-code level frameworks and authoring tools is still
missing. With MINT, the Multimodal Interaction Framework
[Blinded] that will be explained in more details in the next section,
we propose a model-driven design approach to fill in this gap.

3 Model-based Design of Mixed Reality

Interaction

For the design and implementation of mixed-reality interaction we
apply a model-driven design of user interfaces (MDDUI) process.
This has the advantage that part of the interface semantics (the
actual widgets and corresponding interaction), such as for
describing commands, lists or selections need to be modelled only
once and can be subsequently reused in interfaces for different
media (like web interfaces, speech or augmented reality scenes).
Actual MDDUI approaches [Calvary et al. 2003] describe these
semantics that can be shared between several media by Abstract
User Interface (AUI) models. Media specific designs are captured
within Concrete User Interface (CUI) models.

MDDUI approaches are typically driven by model-to-model
transformations and therefore implement a design process that first
describes the interaction on a very abstract level (e.g. by task
models) and then continuously refines these models by applying
transformations to more concrete ones until they end up with final
user interfaces to address several devices.

Although these MDDUI approaches have been proven to work

well to generate interfaces for different devices and modes, like
speech [Stanciulescu et al. 2005] or 3D interfaces [Gonzalez-
Calleros et al. 2009] for instance, they end up with isolated
interfaces for each targeted combination of mode and media which
has several disadvantages like:

1. A interaction techniques like a Drag-and-Drop that spans

different media or can be controlled by different modes

cannot be implemented;

2. Multimodal interfaces that combine several modes and

media for a more natural interaction can only be

implemented to a limited extent: Changes of devices or

addition of modes require processing all design models and

their transformation again to generate new interfaces;

3. Starting a design process with a very high level of

abstraction (such as by task models) requires the developer

to have extensive anticipation skills and a deep knowledge

of the transformational system to imagine how the final

interfaces will behave and look like. This is often

mentioned as a reason why MDDUI has not been adapted

by the industry so far [Vanderdonckt 2008].

To address these challenges we propose the Multimodal
Interaction Framework (MINT) [Feuerstack and Pizzolato 2011].
With the MINT framework, multimodal user interfaces are
assembled by interactors. Different from the transformational
development, the assemblage of interfaces by predefined elements
is a common user interface development approach that is often
supported by graphical user interface editors.

4 The Furniture Shop1

The furniture shop is a prototype of a web application that allows
customers to buy furniture online. Using the furniture shop, a
customer can choose among different objects and fill up a
shopping cart. The furniture shop is targeted to address a common
problem with buying furniture online: Does it really fit well in the
room? Object sizes can be manually measured even if this is a

1 A video documentation of the furniture shop prototype

can be found online at http://multi-access.de/64

Fig. 2. The complete setup to control the web application
using gestures.

Fig. 3. After the reality frame has been activated, the online

shop presentation is faded out and the shopping cart is moved

to reflect the detected position of the monitor.

http://multi-access.de/64

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

cumbersome and error-prone task. But deciding about the right
colour or the object size in relation to other, already existing
objects requires experience and good imagination skills. Therefore
the online shop prototype includes an augmented reality viewer
that depends on a background webcam. This webcam is connected
to the user’s PC running the browser and is directed to the place
where the furniture should be positioned. For the interaction to
work seamlessly the background cam also needs to captures the
user’s PC. Figure 2 illustrates this setup.

All interaction with the furniture shop prototype happens inside
the browser. To switch between the online shop and the
augmented 3D scene of the user’s room we introduce a reality
frame that needs to be crossed by a pointer. If an item is dragged
out of the shopping cart, the reality frame gets activated and
changes to display a dashed border. As soon as the user picks up
an item of the shopping list and crosses the dashed line of the
shopping cart (figure 3), the online shop website site is removed
from the web interface and automatically replaced by a video
stream of the background cam that shows the actual AR
environment. The currently dragged item is toggled to a 3D
VRML representation in the AR scene and the user can
additionally move the object on the Z-axis (by using the mouse
wheel) to position it exactly in the AR environment.

Figure 4 depicts the result of several objects that were successfully
dropped to the AR scene. Since the AR scene shows the reality
frame as well (the border around the monitor in figure 4) the user
can easily navigate back to the web site by crossing the reality
frame around the monitor with the pointer again. In the AR scene
the pointer is shown as a red dot (see figure 4) and raises its size if
it is moved closer.

The prototype supports two control modes: First, a basic one that
uses the mouse to drag and drop items from the shopping cart into
the augmented scene. Second, by using a second webcam that
tracks the user’s hands and recognizes basic gestures. The former
one is targeted to be used with no extra hardware, but with the
limitation that z-axis movements need to be performed with the
mouse wheel. The latter one requires coloured gloves, a second
webcam and good lightning conditions but implements a more

natural interaction: One hand is used for pointing to objects and
the other one from grabbing and releasing objects (figure 2).

To initial setup requires a calibration that calculates the relative
position of the user’s PC in the part of the environment that is
captured by the background cam. For this, the system displays a
visual marker full screen in the browser (figure 5). The calculation
involves two steps: 1) the position of the marker is calculated
using ARToolkit [Kato et al. 1999]; 2) the monitor size is
calculated by retrieving the browser screen resolution and the
actual DPI setting. Both are detected by using the Javascript
browser API and the result is presented as a blue reality frame
around the screen of the monitor (figure 5).

The furniture web application is used in the following section to
explain our approach since is a good example for the challenges
we address with our approach: It describes (1) a well-known
interaction technique (a drag-and-drop), that (2) needs to be
adapted to function media-spanning (between the 2D web and the
3D augmented reality), and (3) should consider different control
modes (a mouse and gestures).

5 Modeling Multimodal Interaction

With the MINT framework interactors mediate information
between a user and an interactive system. They can receive input
from the user to the system and send output from the system to the
user.

Each interactor is internally equipped with one AUI model that
specifies the general, media independent representation and
several CUI models to represent specific characteristics of a
certain media. In the furniture shop prototype we used one CUI
model to describe the graphical interface presentation in the web
browser and a second CUI model to specify its appearance and
behaviour in the AR scene. Each of these models consists of a
static description that specifies the data as well as a description of
each interactor’s behaviour. We describe the former one by class
models and the latter one by state charts.

Fig. 5. If the reality frame is activated, the auto-calibration

detects the monitor position by displaying a visual marker

and switches back to the web site after the marker has been

detected.

Fig.4. The final scene after dropping some objects out of the

web browser. The blue frame displays the reality frame and

the red dot the mouse pointer.

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

The modelling of interactors that we will present in the following
sections might look initially complex but it enables the models to
be transformed to code and to execute them as state machines.
Further on, new interactors are only required to support new forms
of interaction or include a new mode or media representation of an
existing interface. Thus, interfaces are still created based on a pre-
existing set of interactors that can be assembled without
knowledge about their interns.

5.1 Media Modeling

Figure 6 shows the static AUI model structure, which represents
all interactors that we have realized so far. All AUI interactors are
derived from the basic Interactor class that sets a unique name and
enables storing the actual states of an interactor. From the
Interactor class the central Abstract Interactor Object (AIO) class
is derived. It describes all abstract media independent interactions.
The static AUI model distinguishes between interactors that are
primarily designed for capturing user input (derived from the
Abstract Interactor Input, AIIN class) and interactors that are used
to return output to the user (Abstract Interactor Output, AIOUT).
This distinction conforms to the separation between mode and
media and therefore helps to understand, which parts of an

interface can be handled by what kind of device.

For the sake of brevity we focus on the explanation of the two
central interactors that we rely on to model the Drag-and-Drop
interaction technique later on: The overall choice container
element (AISingleChoice) and the individual elements of the
choice container that can be chosen (AISingleChoiceElement).
Although the distinction of the choice into two elements seems
quite unfamiliar at first, it is the result of the strict separation
between input and output elements in the AUI. It is also driven by
the idea of modelling self-executable interactors that can be
moved between modes and media and have an individual
behaviour model. In the following subsections we describe our
main contribution, the model-based design of interactors. First we
present exemplary two interactors that represent the shopping cart
(which we call “choice”) to explain the basic concepts of media
interactor modelling in the first subsection. Thereafter, in the
second subsection, we complement the choice interactors with a
first very basic mode: a mouse. Then, in the third subsection, we
describe our concept of multimodal interaction technique design
with mappings that specify how the user can control an interactor
through a mode. We focus on the drag-and-drop interaction
technique of the furniture shop to explain such a connection.
Finally, the last subsection briefly introduces initial tool support
for the interactor design.

AUI Choice Interactor

Figure 7 shows the behaviour model of a choice list element. It
implements the basic lifecycle of all AIOs. After its initialization
(state “initialized”), it is “organized”, “presenting” and
“suspended”. Within the “organized” state the AIO’s neighbours
are calculated. In state “presenting” an AIO is shown to the user
and can be in the user’s focus (state: “focused”).

By navigation (“next”, “previous”, ”parent” transitions) the focus
can be moved to another AIO interactor. Finally, an AIO element
is suspended if it is no longer part of the interface presentation.

An AIChoiceElement supports being dragged to another AIChoice
and being chosen. The dragging process is part of the interface
navigation and can only be issued if the element is in the user’s
focus. After an AIChoiceElement has been dropped to its
destination it is set to the state “listed” again. The element
selection is managed in parallel to the interface navigation but
choosing an element is only possible if it is in the current user’s
focus.

The state chart-based element specification supports calling
functions (actions) and sending events to other elements’ state
machines. Thus, to move the focus the next element, we call the

Fig.6. The static, abstract, media independent interactor

model.

Fig.7. Choice element behavior description.

Fig. 8. Static model of the 3DObject.

AUI:AIO:AIChoiceElement:

 AISingleChoiceElement

initialized

listed

focus

suspended

organize

defocus

organized

suspend

focused

organize

Presenting

chosen

unchosen

drag

dragging

unchoose

drop

H

[in(focused)] choose

/ aios=find(parent.childs.chosen);

aios.all.unchoose

 next||prev||parent

/aio=find(act);

aio.focus

Selectionpresent

+move()
+rotate()

+origin_x : int
+origin_y : int
+x,y,z : int
+face : string
+texture : string
+rotation : int

Class1::3DObject

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

action “find(next)” and send a “focus” event to the next interactor.
Furthermore, by using a condition, we ensure that only one list
element is chosen at any time.

Each abstract interactor model can be complemented by a concrete
model to consider media specific characteristics. In the case of the
furniture shop, the shopping cart consists of 3DObjects, which
consider media specific features, such as a 3D coordinate system
and specific functionality like object rotation and movements like
illustrated by the class structure of the 3dObject in figure 8.
Further on, media specific behaviour can be added by a concrete
model state chart.

5.2 Control Mode Modeling

In the last subsection we described how we model an interface
element as an example for the media part of an interface. To
control the interface we need modes. These can be described in the
same way like the media, but modes can also be combined to offer
a multimodal control of interfaces. Since the modes are
declaratively modeled and directly executed by state machines,

they can be easily manipulated at system runtime to prototype
different ways of interacting with the same mode. Further on, new
modes can be added by designing new mode models and using

mappings to connect them. Figure 9 presents the mouse mode
specification that we use to control the prototype.

Mouse Mode

The behaviour specification of the components of the mouse is
straightforward as illustrated by the state charts of figure 9. We
distinguish two different types of states: states that describe a
continuously ongoing action and states that describe an action that
has just happened. An example for the former one is the moving
state of the pointer that expresses continuously updating
coordinates of the moving mouse, whereas the stopped state
defines an action that just has happened. The class diagram is used
to identify the data structure as well as to enable device
composition. Thus, a mouse is composed by components like
buttons, a pointer and a wheel for instance.

Gesture Mode

Hand gestures are already widely used as a natural way of human-
computer interaction [Ballagas et al. 2007, Bolt 1980]. But the
definition of suitable gestures depends on various factors and
extensive user testing. These factors include for instance: the
chosen hand poses, the number of hands considered, the feedback
of the interface when a gesture is recognized, the delay on
processing and communication, the ergonomics, the intuitiveness
of the interaction, among other possible factors.

Our system works with only 4 simple gestures and it can reach
accuracy close to 100%. It performs basic image processing
techniques by using colour segmentation with coloured gloves that
avoid environmental and hardware constraints on segmentation of
images.

Figure 10a depicts the behaviour model of the gesture interaction
resource that we use to control the furniture shop. It allows the

Fig.9. The composition of a mouse (left) and the behaviour

models of the mouse components (right).

Fig. 10 (a) A behavior description of a one – and two handed gesture and posture control for the furniture shop.

(b) The static interaction resource composition and (c) the four principal postures of the controlling hand.

IR:IN:Pointer

stopped

move stop

moving

IR:IN:Button

released

press release

pressed

IR:IN:Wheel

IR:IN:Mouse

Mouse

ButtonWheel Pointer

LeftButton RightButton

- x,y- z

stopped

progressingregressing

stopstop regress progress

progress

IR:HandGestures

NoHands

select

Commanding Hand

selected

released

release

select

Navigation Command

 Ticker
started [t]/tick

 Movement

fastest
entry/

t = 800ms

faster
entry/

t = 1000ms

closer

farer

previous

next
normal

entry/

t = 1200ms

closer

farer

previous
next

next

Predecessor

previous

Successor

tick

tick

start_p
tick

start_n
tick

Pointing Hand

move

moving

stopped

stop

move

Two Hands

select

selected

released

release

Commanding Hand

[command_hand_appeared]
[pointer_hand_appeared][command_hand_disappeared] [command_hand_appeared]

Pointing Hand

move

moving

stopped

stop

move

[pointer_hand_appeared]

[pointer_hand_disappeared]

[command_hand_appeared]

Interactor

HandGesture

Commanding

Hand

Pointing

Hand

Structure:Gesture

Interaction

Resource

NoHands

previous next

selectreleasea)

b)

c)

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

user to flexibly interact with one or two hands. The left hand of
the user is used for pointing, a motion-related gesture, and the
right hand for initiating the drag-and drop by a “button-press” kind
of gesture, like illustrated in figure 10c. In the case that just the
commanding hand is detected the user additionally has the option
to navigate (e.g. to select one element of the shopping cart) by
showing a next- or previous static posture to substitute the
pointing. The navigation mode benefits from a ticker that triggers
a navigation action in fixed intervals as long as the navigation
posture is shown. The ticker can be manipulated by the user by
moving the commanding hand closer or farther to the camera (see
the “movement” super state in figure 10a).

5.3 Interaction Technique Modelling

Now that we have modelled a mouse and a gesture mode, we can
connect its components to the user interface. We use mappings to
specify these connections. Mappings rely on the features of the
state charts that can receive and process events and have an
observable state. Thus, each mapping can observe state changes
and trigger events.

Mappings can be either pre-defined (e.g. to support a certain form
of interaction with a particular device or to implement an
interaction technique, such as the drag-and-drop that we describe
in the following) or specified during the application design (e.g.
stating that a security critical command must be confirmed with a
mouse click and a voice command).

Figure 11 depicts the principal drag-and-drop mapping that we
specify using a graphical notation similar to a flow chart. The
mapping is bound to a (hardware) button and the AUI model part.
Thus it can be applied for different media. Rounded boxes specify
observations of state changes whereas boxes with sharp edges
state events. With cycles, several different multimodal relations
could be stated, such as redundant or sequential actions for
instance. For the drag-and-drop mapping we just need the
complementary operator, C, which is evaluated to true if all
observations can be evaluated to true in a defined temporal
window Tw.

The mapping is activated as soon as the Button is pressed and one
AIChoice element (like the AISingleChoiceElement of figure 3) is
in “focused” state. It then collects all selected list elements (aios)
and sends them a drag event. As soon as the user releases the
button while focusing on another list of the type AIChoice, the
mapping sends a drop event to this list together with all elements
that have been dragged. If the button is released without a list in
focus, the complementary operator fails and the elements are
dropped back to their origin.

To use the mapping with the hand gesture recognition only minor
adjustments need to be made: the initial “b=Button.pressed”
observation of the mapping has to be changed to
“b=HandGestures.pressed” to be triggered in case the control hand
shows the “button pressed”.

Comparing to the mouse mode we presented earlier, the virtual
“button pressed” posture misses a feedback to give the user the
impression of a physical click. Figure 12 presents two exemplary
multimodal mappings that add sound as a media to give feedback
to the user. The first mapping shown in figure 12a implements this
feedback: it waits for the “select” posture (figure 10c) that is
shown while an interface element is in focus to play a sound. By
using the redundancy operator, R, the interface navigation by the
next and previous postures can be enriched by a sound feedback.

The redundancy operator outputs two events with a redundant
meaning to different media. Thus, like illustrated in figure 12b, if
the next posture is shown while an element is in focus, the focus
will move to the next element and a specific sound (a click) is
issued to additionally confirm the navigation.

5.4 Tool Support

The behaviour specification of interactors that can describe media,
such as the graphical web interface that we are using in the
furniture shop, as well as various modes, is supported by a design
tool. We decided to base our approach on State Chart XML
(SCXML), which is an upcoming W3C standard based on the
Harel state chart definition [Harel 1987].

Different from other model-driven approaches that introduce new
languages and design processes through several abstract models
which need to be learned by the designer, MINT (using state
charts for interaction modelling) has the advantage that state charts
are already widely known and have a small sized basic vocabulary
(mainly states and transitions driven by events).

For our interactor models we used the scxmlgui editor, which is
written in Java and supports the basic SCXML vocabulary that our
state machine designs are based on. Figure 13 shows a screenshot
of the editor during the design process and the generated SCXML
code that we parse to generate state machines.

6 Limitations and Ongoing Work

Using the mouse, the reality frame’s position has to be matched
with the monitor’s position in the camera view for seamlessly

Fig.11. The Drag-and-Drop Mapping using a pointer and a button.

Fig. 12. Mappings to connect sound media and a gesture-

driven control to the interface.

C
dst=AIChoice.focused

C

Tw<0,3s

aois.drag
dst.drop(aios)

src=AIChoose.focused

Tw<0,3s
b=Button.pressed

aios=src.childs.all(chosen) b.released

src.drop(aios) fail

C
aio=AIO.focused

Tw<0,3s

aio.nextHandGestures.Successor.next
R

Sound.click

C
aio=AIO.focused

Tw<0,3s
HandGestures.select

Sound.plop

a)

b)

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

moving the pointer between the web interface and the AR scene.
Although the mouse has the advantage of being the common
device for web browsing, unfortunately, it was designed for a 2D
coordinate system. We performed movements along the z axis in
the AR scene by using the scroll wheel. But it turned out to be
quite uncomfortable to drag objects having the button pressed and
simultaneously using the wheel to arrange objects along the z axis.

These problems could be solved by the gesture-based drag-and-
drop control since these modes are not so tightly connected to the
desktop system, as the mouse. The gesture-based control can
address a much larger space in the room and mainly depends on
the viewing angle of the camera that captures the hand movements.
But gloves have a different issue. Since they cannot be used to
control the web browser interface, the user is bound to use two
different controlling devices (mouse and hand), having to switch
between them during the use of the application. Also, there is the
need for two cameras, one for the AR and one for the gestures
detection.

Considering the rotation of objects, it is possible to implement
some commands with the mouse, such as right button click rotates
in the x axis, and left button click rotates in the y axis, but this can
be confusing and cumbersome for the user to make the desired
rotation.

A solution using hand gestures has the same problems, requiring
two different steps. It could also create a number of gestures too
big for the user to remember.

The first prototype of the furniture shop was based on the
ARToolkit for implementing the AR tracking and 3D object
rendering. But to run everything inside the web browser, which is
one of our main objectives, we had to stream the rendered AR
scene from the ARToolkit implementation to an embedded flash
player in the Web site. This solution was not working very well
because of the latency due to the stream transmission, which is
noticed by the users when they moved the pointer around.

Therefore we re-implemented the furniture shop prototype and
based the implementation on FLARToolkit (a flash
implementation of ARToolkit) for the marker tracking part and
used X3DOM (an open source framework that integrates HTML5
and declarative 3d content) for the 3D object rendering.

FLARToolkit feeds X3DOM with the tracking results and
X3DOM renders and controls the 3D scene with Javascript,
resulting in a Web based AR system working with no delays when
moving the pointer or objects around.

We are currently extending the gesture control to experiment with
different gestures to rotate objects and preparing our prototype to
be published on our website for users to try out our approach. We
hope to collect enough data to compare different ways of
positioning the furniture using the mouse and different gestures
and postures.

7 Conclusion

This paper presented a novel approach to design seamless
interactions between different media and control modes. A model-
based approach was used and a drag-and-drop application between
different media (AR and web interfaces) and different modes
(mouse and gesture-based control) was implemented.

Different from other works reported in the literature, our work
supports the behaviour modelling of interface elements by state
charts, which have been earlier applied to model graphical
interfaces but not to span different media or consider multimodal
control in AR. By means of mappings, modes and media could be
combined in a declarative manner as well as design interaction
techniques like the drag-and-drop. By combining declarative
modelling with flow-chart oriented graphical notation, changes in
interactions as well as support for new media and modes can be
done on an abstract level instead of code-level (a tedious task even
for a single device and computing language)

Acknowledgements

Ednaldo B. Pizzolato thanks FAPESP for supporting the
presentation of this research at the conference. Sebastian
Feuerstack is grateful to the Deutsche Forschungsgemeinschaft
(DFG) and the EU ARTEMIS JU project HoliDes SP-8, GA No.:
332933 for the financial support of his research. Any contents
herein reflect only the authors' views. The ARTEMIS JU is not
liable for any use that may be made of the information contained
herein.

References

[Ballagas et al. 2007] BALLAGAS, R., MEMON, F., REINERS,

R., AND BORCHERS, J. O. 2007. istuff mobile: rapidly

prototyping new mobile phone interfaces for ubiquitous

computing. In Computer Human Interaction, 1107–1116.

[Bernsen 2008] BERNSEN, N. O. 2008. Multimodality theory.

In Multimodal User Interfaces, D. Tzovaras, Ed., Signals and

Communication Technology. Springer Berlin Heidelberg, 5–

29. 10.1007/978-3-540-78345-9_2.

[Berti et al. 2004] BERTI, S., CORREANI, F., MORI, G., PATERNÃ²,

F., AND SANTORO, C. 2004. Teresa: A transformation-based

environment for designing and developing multi-device

interfaces. In ACM CHI 2004, ACM Press, Vienna, vol. II,

793–794.

[Bolt 1980] BOLT, R. A. 1980. "put that there": Voice and

gesture at the graphics interface. In Proceedings of the 7th

Annual Conference on Computer Graphics and Interactive

Fig.13. The scxml gui editor to design interactor behavior.

©Sebastian Feuerstack, 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.

Techniques (SIGGRAPH ’80), ACM Press, New York, NY,

USA, 262–270.

[Bouchet et al. 2005] BOUCHET, J., NIGAY, L., AND

GANILLE, T. 2005. The icare component-based approach for

multimodal input interaction: Application to real-time military

aircraft cockpits. In HCI International.

[Broll et al. 2005] BROLL, W., LINDT, I., OHLENBURG, J., HERBST,

I., WITTKAMPER, M., AND NOVOTNY, T. 2005. An

infrastructure for realizing custom-tailored augmented reality

user interfaces. IEEE Transactions on Visualization and

Computer Graphics 11, 722–733.

[BuildAR. 2015] BUILDAR., 2015. Buildar. Available

at:http://www.buildar.co.nz/home/download/ last checked

09/01/15.

[Calvary et al. 2003] CALVARY, G., COUTAZ, J., THEVENIN,

D., LIMBOURG, Q., BOUILLON, L., AND VANDERDONCKT, J.

2003. A unifying reference framework for multi-target user

interfaces. Interacting with Computers 15, 3, 289–308.

[Feuerstack and Pizzolato 2011] FEUERSTACK, S., AND

PIZZOLATO, E. 2011. Building multimodal interfaces out of

executable, model-based interactors and mappings. In

Proceedings of the HCI International 2011; 14th International

Conference on Human-Computer Interaction; Human-

Computer Interaction, Part I, Springer, Heidelberg (2011),

Hilton Orlando Bonnet Creek, Orlando, Florida, USA.,

J. Jacko, Ed., no. LNCS 6761, pp. 221–228.

[Gonzalez-Calleros et al. 2009] GONZALEZ-CALLEROS, J.,

VANDERDONCKT, J., AND MUOZ-ARTEAGA, J. 2009. A

structured approach to support 3d user interface development.

In ACHI ’09. Second International Conferences on Advances

in Computer-Human Interactions, 2009., 75 –81.

[Harel 1987] HAREL, D. 1987. Statecharts: A visual

formalism for complex systems. Sci. Comput. Program. 8, 3,

231–274.

[Hill et al. 2010a] HILL, A., MACINTYRE, B., ANDBRIAN

DAVIDSON, M. G., AND ROUZATI, H. 2010. Kharma: An open

kml/html architecture for mobile augmented reality

applications. In Proceedings of the 3rd IEEE/ACM

International Symposium on Mixed and Augmented Reality,

ISMAR.

[Hill et al. 2010b] HILL, A., MACINTYRE, B., GANDY, M.,

DAVIDSON, B., AND ROUZATI, H. 2010. Prerequisites for open

ar standard. In Technical report, GVU Center, Georgia

Institute of Technology, International AR Standards Workshop.

[Hopmann et al. 2011] HOPMANN, M., GUTIERREZ, M.,

THALMANN, D., AND VEXO, F. 2011. Bridging digital and

physical worlds using tangible drag-and-drop interfaces.

Transactions on Computational Science 12, 1–18.

[Kato et al. 1999] KATO, H., BILLINGHURST, M., BLANDING, B.,

AND ARTOOLKIT., R. M. 1999. Artoolkit. Tech. rep., Hiroshima

City University.

[Lawson et al. 2009] LAWSON, J.-Y. L., AL-AKKAD, A.-A.,

VANDERDONCKT, J., AND MACQ, B. 2009. An open source

workbench for prototyping multimodal interactions based on

off-the-shelf heterogeneous components. In Proceedings of the

1st ACM SIGCHI symposium on Engineering interactive

computing systems, ACM, New York, NY, USA, EICS ’09,

245–254.

[Ledermann and Schmalstieg 2005] LEDERMANN, F., AND

SCHMALSTIEG, D. 2005. April a high-level framework for

creating augmented reality presentations. In Proceedings of

the 2005 IEEE Conference on Virtual Reality.

[MacIntyre et al. 2004] MACINTYRE, B., GANDY, M., DOW,

S., AND BOLTER, J. D. 2004. Dart: a toolkit for rapid design

exploration of augmented reality experiences. In Proceedings

of the 17th annual ACM symposium on User interface

software and technology.

[Ray and Bowman 2007] RAY, A., AND BOWMAN, D. A. 2007.

Towards a system for reusable 3d interaction techniques. In

Proceedings of the 2007 ACM symposium on Virtual reality

software and technology, ACM, New York, NY, USA,

VRST ’07, 187–190.

[Rekimoto and Saitoh 1999] REKIMOTO, J., AND SAITOH, M. 1999.

Augmented surfaces: a spatially continuous work space for

hybrid computing environments. In CHI ’99: Proceedings of

the SIGCHI conference on Human factors in computing

systems, ACM Press, New York, NY, USA, 378–385.

[Rekimoto 1997] REKIMOTO, J. 1997. Pick-and-drop: a direct

manipulation technique for multiple computer environments.

In UIST ’97: Proceedings of the 10th annual ACM symposium

on User interface software and technology, ACM Press, New

York, NY, USA, 31–39.

[Schmalstieg et al. 2002] SCHMALSTIEG, D., FUHRMANN, A.,

HESINA, G., SZALAVARI, Z., ENCARNACAO, L. M., GERVAUTZ,

M., AND PURGATHOFER, W. 2002. The studierstube augmented

reality project. Presence: Teleoperators and Virtual

Environments, 11, 33–54.

[Stanciulescu et al. 2005] STANCIULESCU, A., LIMBOURG, Q.,

VANDERDONCKT, J., MICHOTTE, B., AND MONTERO, F. 2005. A

transformational approach for multimodal web user interfaces

based on usixml. In ICMI ’05: Proceedings of the 7th

international conference on Multimodal interfaces, ACM

Press, New York, NY, USA, 259–266.

[Vanderdonckt 2008] VANDERDONCKT, J. 2008. Model-

driven engineering of user interfaces: Promises, successes,

failures, and challenges. In Proceedings of ROCHI 08.

[Wingrave et al. 2009] WINGRAVE, C. A., LAVIOLA, JR., J. J.,

AND BOWMAN, D. A. 2009. A natural, tiered and executable

uidl for 3d user interfaces based on concept-oriented design.

ACM Trans. Comput.-Hum. Interact. 16 (November), 21:1–

21:36.

